

UNCLASSIFIED

Report to the Test Director
AIRBLAST OVERPRESSURE AND DYNAMIC PRESSURE OVER VARIOUS SURFACES UNCLASSFFIED

D.C. Sachs
L. M. Swift
F.M. Savor

CONFIDENTIAL

Chapter 1
 INTRODUCTION

1.1 OBJECTIVE

The objective of Project 1.10 was to obtain data on the variation with gr sund range of static overpressure (side-on) and dynamic pressure frum a nuclear explosion uver a dust-free water surface, an asphalt surface, and a natural ipsort surface.

Particular attention was given to the relationship between overpressure and dymamic pressure in the regions of expected perturted wave forms. These data were to be used for the modification and reinforcement of theory of blast effecta and precursor formation. Accurate theory would permit establishment of damage criteria under a variety of burat conditions, when correlated with measurements of other blast phenomena. Spectife data were also to be furnished to Programs 3 and 5 for use in analyzing structural effects.

1.2 BACKGROUND

Prior to 1952, the optimum height of burst for maximum area of desired gruund level peak overpressure was obtained from Reference 1. This information was based on theoretical considerations and extrapolation from small-scale experiments, and on limited nuclear-explosion data from Bikind Able and a few tower shots. The Buster shots in 1951 indicated considerable disparity between predicted and observed pressures both in amplitude and wave form (Reference 2). The Tumbler shots in 1952 were planned to resolve some of these differences; the results confirmed that at certain rolativoly lowscale heights of burst these discrepancies were real (Roforonce 3). On Tumbler Bhot 4 (particularly at pressure levels above approximately 8-psi palk) amplitudes ware roduced, rise times were increased, and the volocity of propagation of the firat effects was increased. These effects were shown to be associatod with the thermal radiation acung jointly on the earth's surface and on surface-produced dust clouds to produce a thermal layer. Evidence indicated the existence of severe turbulence in theee regions of Interest, which complicated the problem of delineating the behavior of the olast wave by point memsuremente. Ai inie ciatio a rather atisfactory qualitative analysis of theeo phenomena was formulated. However, the quantiative data from Tumbler wore insufficlent to permit developrent of analyucal techniques that would allow predictions of the magnitude of these disturbing effects under a givon eot of conditions other than for a desert-like surface.

The Upshot-Knothole shote in 1953, particularly Sbots 1, 1C, and 11, provided a great deal of quantitative data on these phenomens (Reforences 4 and 5). Data from these and previous ahots pormitted the deveiopment of anciytical techoiques for prediction of overpresaure to a aatiafactory degree of accuracy, but it became increasingly
 factory in these regions of distorted wave forms. Thle was particularly true on UpsbotKnothole Shot 10, where damage to eeveral types of largets at ame ground ranges was fer greater then that expected on the basis of the peak overpressure observed. A aumber of measurements of dynamic pressure were planned and conducted, but the rather unexpecied damage to the gago mountlags themselves roduced the usofulness of the data (Reference 6).

Program 1 of Operation Teapot was therefort planned to give primary emphasis to measurement of dynamic pressures in those regions where the relationship between dynamic prosaure and overpressure remained questionable. Analysis of earlier data had aleo indicated that the mapiltude of these unpredicted effects probably depended on the nature of surfaces involved; Teapot, therefore, included an Investigation of the effects of different types of surface upon blast phenomena.

Prior to Teapot, experimental data seemed to indicate that formation of the precursor was due to refruction of the incident ahock wave by a layer of heated air near the ground surface. It was believed that if the temperature of the beated layer were sufficlently bigh with reapect to the ambient alr above it, the velocity of this refracted shock wave would be increasod so that it would reach a ground radius atation sooner than would the incident (undisturbed) ahock wave. The reiracted wave, as it was propagated through the beated air layer, also sent another shock wave into the amblent air above the thermal Layer (Referonce 7). Although few dynamic-pressure measurements bad been obtained In the procursor region, the data avallable indicated that the dymamic pressures in the region of duturbed blagt wavea were equas to or greater than ideal and mucn greater than would be calculated from the measured overpressures uaing the clasalcal RankineHuponiot relationship applicable acrose a shock front.

These abnormally higa dynamic-pressure measurements were at least partially explained when laboratory teste indicated that the pitot-atatic tube measurement is sensiuve to dust or other particulate mater carried along by the shock wave. Differential prossures measured in the precursor region are therefore belleved to represent the dynamic pressure of the air plus eome portion of the dymmic prossure associated with dust.

Before Teapot, very litule data was avallable for determining the effect of the physical properties of the ground aurface upon precursor wave formation and development. A few measurements of diatrubed blast waves over land and water and the resul'd of the amoke experiments on Upabot-Knothole (Reference 7) Indicated that conditions which altered the phyalcal charactoristics at or near a surface could have a profound effect upon measured preasures and wave forme. Furthermore, since it has bocome apparent that prossure measurements are infuenced by auch parameters as duat density, nearsurface tomperatures, and wind direction, the determination of these quandities assumes a greater importance than provioualy realized. For this reacon, the Teapot program tocluded extonalve moasurements of some of the more-fundamental blast parametara for which prosumably dopeodeble inatrumentation had been doveloped proviously, and included a limited number of exploratory measuremente of the more-important phyaical paramotera.

Finally, a Umited program of drag-force measurement on aimple ahapes was incl'rded. These moasuremente, when coupled with the pressure measuremente at the aume locations, could permit later correlation with wind-tunnel and ahock-tube expertmenta dealmed to invertigate the drag forces doveloped by a precuraor.

Chapter 2

PROCEDURE

2.1 DESCRIPTION OF TESTS

The two Operation Teapot Shots with which this report is concerned are Bhots 6 and 12 (see Table 2.1).

Blast measurements on Shot 6, although limited in number, were included to explore the offects of different types of ground surface (desert and asphalt). In addition, it was thought that Teapot Shot 6 data could help clarify the results obtalned on Upchot-Knothole Shot 10 (Reference 4), which was detonatod at approximataly the ame burat holght.

Shot 12 measurements, taken over three different surfaces (decort, asphalt, and water), were designed to obtain detailed information on the effecte due to aurface properties in the region of disturbed blact waves. Also, it was hoped that the measuremente would yield definitive data on pitot-tube dynamic pressure. fow of which wore avallable from nuclear tests prior to Teapot.

2.2 CAGE LAYOUTS

2.2.1 8hot 6. The gage layout for 8hot 6 (Figure 2.1) was deaigned to obtain maydmum information practicable with the 24 avallable gage channels. Since ground $20 r 0$ was locsted near the northern edge of the paved area in Aree T-7-1, blest lines were extended both north over the desert area and south over the paved area. The avallablilty of these surfaces, similar to two of those used on thot 12, was the basis of the decision to inetrument this shos. However, the desert surface in this area was rough and bouldor-atrewn, In contrast with the amooth surface of the Frenchman Flat area of 8hot 12. Ne0, the asphalt aurface was broken and ridsed in places, but atill provided a definite coatract to the desert surface and was much greator in leagth and apan than the 8bot 12 apphalt lise. On each line, gage atations were located to concentrate on the rogion of probable tranalLIon between precursor and normal wave forms. Ground ranges of $1,500,1,650$, and 2,000 leet in each direction were chosen as those most likely to producu the critical ioformation, based on the protent entimate ci yleld and on the reaulte of Upehot-Koothole Shot 10.

If was decided tha, acacurements of surface-lovel overpreasure, and of overprescure and dymar: :c pressure (uaing a pitot-tube gege) at $10-100 t$ elovation at each station would provide maximum uceful information. To compute corrections to the measured dynmic pressure corresponding to variatlons in pitch angie of Dow, pltch geres at 10 foet were Included at each gige station. (The angle of pitch is dofined as tho Dow angle measured in that vertical plane which is determined by the pitch gage and sround zero.)
2.2.2 Shot 12. The gage layout for Shot 12 (Figures 2.2 and 2.3) was a complex problem. The ceneral concept of Program 1 for this sbot wea to lnstrument three difforent blast lines: one over a water surface, one over an aephalt surface, and the third over the natural desert. An offort was made to locate geges on ench line to obtain the maxdmum information of interest and the madmum correlaticn botween lines. A number of projecte participated, and the resultant case layout for Projoct 1.10 represented, in
anme instances, a compromise between interests for the best overall program resulti.
The general principle followed in instrument layout was as follows. Surface-level alr pressures were measured at sufficient stations along each line to provide correlation with other shots and general information as to pressure level versus radius. Aboveground (10 -foot) overpressure was meacured at a few stations on each line for further correlaticn with other shots and for determination of any pressure gradients which might be detectable. Dynamic pressures with their associated overpressures were measured at 3- and 10-foot heights at intervals determined partly by practicability of towers and partly by the usefuiness of this information to other projects and programs. At one sta-

TABLE 2.1 DEECRUPTION OF TEATE

	$\begin{aligned} & \text { Code } \\ & \text { Mase } \end{aligned}$	Date	Location (Aree)	$8 / 4 x-L / 40$Aurince	Yiold	Helditis	Almoe. Preas.		Air Temp	
Sot							O2	Rurat Hi	02	Rurit HI
					M	n	ab	anb	${ }^{\circ} \mathrm{C}$	${ }^{-} \mathrm{C}$
-	Se0	Mar 22, 1983	T-9-1a (Treen)	Decert Anpialt	1.71	500 Tower	89	071	1.0	3.0
18	Mer	Apt 15, 1083	Pracolonen This	Water Deeert Aspinalt	22.0	400 Toser	008	183	198	18.9

tion on each line, investigation was made of the variation of dynamic pressures with $\because: \quad$ heights up to 40 feet. At two stations (1,500 and 2.500 feet) on the water line, the pituttube measurements were made at locations which were displaced from the main blast line (eee Figure 2.4). It was hoped that these measurements would aid in determining the extent and time of feed-in of disturbances from the desert surface. Measurements on the water and asphalt lines were reatricted in radius to that of the lines themselves. In general, for each gage measuring dynamic pressure. associated measurement of pitch was made by Project 1.11 (Sandia Corporation) for correction oi messured pressures and for atudy of 鸟ow characteristics. Full detall of the gage layoute can be obtained from Figures 2.2 through 2.4. In conjunction with thle project, seven insirument channels were supplied to Project 3.6 for their direct use, not connected with free-field phenomenology. Two channeis were used for measurements of loading on beams under Project 3.2. These beam devices wore located at 200- and 2,500-foot ground range on the desert line.

2.3 PREDICTIONS

In planning an experiment of this type, it is necessary to predict the values of the functions to be measured with an accuracy sufficient to allow the sensitivity of each channel to be set closely onough so that satiafactory deflections will be recorded. For best results, these should be within a factor of two from the true values.

Sufficient data were avaliable (Reforences 3, 4, and 5) from shots at similar heights of burat over desert soil to permit reasonably dependable predictions of peak overpressure versus radius for the desert lines of both shots. These came predictions were used for the asphalt lines, under the assumption that thermal effects would be similar to thosc on the desert lines. For prediction purposes, an ideal curve was conntructed for the water line of Shot 12, based on the free-adr curve and assumed reflection factors.

Predictions of dymamic pressure on the decert lines were hased largely on data from Upahot-Knothole Shots 1, 10, and 11 (References 4 and 8). While not as complete as overpressure data, they were sufficient to permit reasonably dependable predictions. For the wator line, predictlons were besed on the theoretical relationships between overpressure and dynamis pressure, uning the idoal curve of overpressure as a basis for calculation.

Figure 2.1 Gage layout, Shot 6.

Prure 2.2 Gage layout, 8bot 12, water and asphalt lines.

Figure 2.3 Gage layout, sant 12, desert line and area layout.

Mrure 4.3 Preacure reraus time, water line, biot 12 (ground range - $\mathbf{1 8 0}$ feet - 1.280 fect).

Maure 4.1 Pressure vorsus ume. wher lise, shot 12 (ground range - 1,800 feet).

 (roond range - 1.800 foot-2.000 tret).

Froure 4.6 Preseure verous time, water lise, sbot 12. (ground range $\mathbf{- 2 . 2 5 0}$ teet-2.500 teot).

Mrure 4.7 Preacure versue tme. water llee. sbot 18 (6.ound raage - 2.530 (eel).

Pigure 4.8 Proegure versus lime. water lloe. Bbot 12 (cround range $=8.500$ foet).

Mrure 4.9 Pressure versus tme, Nater lioe. Bhot 12 (ground range $=2.500$ foet -3.000 (eet).

$3 P 3$ (GR - 1250 FT)

Figure 4.10 Pressure versus Ume, desert lloe. Sbol 12 (sround range $=750$ leet -1.250 (eet).

Prure 4.11 Preasure veraus ume, demert lise. Shot 12
(ground range $=1500$ (eet).

Mgure 4.12 Preseure versus time. desert Ine. 8bol 12 (rround range - 1.500 feet -2.000 feet).

Mrure 4.13 Preseure versua ilme. decert !ise. shot 12 (uround range - 2.000 feer).

Phure 4.14 Preseure veraus Ume. deeen ltoe. Sbot 12 (cround rage - 2.230 fest -2.500 leet).

Figure 415 Pressure versul ime. detert lime. Sbot 12 isround rage - 2.509 feet).

Flume 416 Pressure versua ume. deeert line. Sbol 12 isround range - 2.300 feell

Prgure 4.17 Preasure veraun time. desert lloe, Bbot 12 (sround range -2.750 foet $-3,000$ feet).

Figure 4.18 Pressure versus lime. desen lide. Shot 12 iground range $=3.500$ feet -4.000 feet).

Firure 4.19 Preseure versus time. asphalt lloe. Rhot 12 (groind range $=750$ leet -1.560 feet).

Mgure 4.20 Pressure versue dne. Aphalt Ine. Sbot 12 (yround ragre $=1.500$ feet -2.000 feet).

Fgurv 4.21 Pressure versue tirae, sephat lloe. sbot 12 (ground raage -2.000 (0et - 2.500 (eet).

Fegire 4.22 Pressure veraus lime, asphalt Jloe. 8bot 12 (ground range $=3,500$ feet).

Figure 4.25 Pressure versus time. aphati lioe. 8bot 12 (ground range $=2.500$ foet -3.000 (0001).

Nigure 4.28 Prossure rorsus ume. docert lles. blot 8 (rowad range $=1.650$ got-2.000 foel).

Mrure 4.20 Preseure versus ume. asphalt Iloe. Bbot 6 (rround r:age - 1.300 feet)

sunface level

TYPE
general

DESERT ASPHALT

WATER

0

N

GR O ISOO FT

Mgure 4.28 Wisve forme of overpressure recoras. Sbot 12. Type 0-3.
m
ASPHALT

GR: 10 FY MIGH

GR: 300C FT
SURFACE LEVEL
WATER
TYPE GENERAL

n
SURFACE LEVE
GR. 3000 FT
SURFACE LEVEL

TYPE OR EXAMPLE

TYPE 7R
U/K-S EXAMPLE
GR112029 FT
10 FTMMM
-SECONO RISF DUE

- secono risf due to reflecteo wave
alsf oue to neflecteo wave

WATER

SURFACE LEVEL
ASPHALT

$$
\begin{aligned}
& \text { GR:2500 FT } \\
& 25 \mathrm{FT} \mathrm{HIGH}
\end{aligned}
$$

 TYPE GENEPAL TYPE GENEPAL TYPE GENEPAL

SURFACE LEVEL
Figure 4 so wave lirma of overpresoure recorda. 8but 12.
Thpee 7, b. 7R. and en.

CATER
CESERT

Figure 4.31 Wave torms of dynanulc pressure records. Shot 12. Types $B-E$

TYPE
ASPHALT

Figure 4.33 Overpressure wave form type versus ground range and gage belght, water lins, shot 12.

民:

Figure 4.34 Cyerpressure wave form type versus ground range and gage beight, desert line, 8bots 6 and 12.

Firure 4.36 Dynamic pressure wave form type versue ground range and gage belght, shots 6 and 12.

Fisure 5.1 Arrival time versue ground rage. shot 12.

Mgure 8.2 sbock volocity vereus ground range, sbot 12.

Figure 5.6 Maxdmum overpressure versua gro nd range, water lles. Shot 12.
fact. poak prossures misesured bere are not unlike those mossured near the conter of the asphalt surface. At gage 8tations 17 through 12 (BRL), althougt the resulte are ir regular, there is evideace that madmum prossures wore sigulicantly higher in this doeor sector. Proceoding around toward the water surface, both BRL and Project 1.10 overpressure date show large variations to mapultudo, oven from preseure gages located near the water blat line. Roferring to weve-form claselfacatione lacluded in Figure 5.14. It is apparent that there is some correlation between the bigtor peak pressures and the gage rocorde which exhibl: more advanced wave forms, i. o. , Types 6 and 7. Thle is thought to be characteristic of the eo-called cloaning-up region of the disturbed-binatwave evolution.

Figure 5.8 Maxdmum overpresesure versue ground range. aephatillee, shot 12.

Mare 8.7 Mardmum overpresoure versue ground rame. deeort llen, Elot 12.

Figure 5.9 Mardmum overpressure versus ground range, surface and 10 -foot level, Shot 6.

The thot 12 area map (Figure 6.15) might help to explain the phenomena observed by the BRL instrumentation This area map shows portions of the Frenchman Flat teat area which have undergone stabilization for Teapot and previous operations; also shown on the map. for oany comparison, are the BRL gage-station locations around the instrumented arc. Figures 5.16 and 5.17 are poatshot area photographs showing the character and extent of the stabllized areas. It may be more then mere colncidence that moat of the BRL gages which recorded the higher peak overpressurea were those located near or on a stabllized pad. The obvious conclusion is that abrupt localized changes in the characteristics of the surface over which a blast wave is traveling may have significant effects upon the peak overpressure and time history of a measurement taken in the near vicinity of the altored surface. Nowetheless, it should be emphasizod that the symmetry measurements

Figure 5.10 Madmura overpressure versus ground range. deeet and asphalt. 8hot 12.

Figure 5.12 Maximum overpreasure veraus ground range,
j-foot level. 8bot 12 .

taken on only one shot in the teat serles were available and at a ground range (2.500 feet) where the blast wave disturbaices were somewhat spent. Therefore, it is recommended that almilar instrumentation be included on future tests, both within and beyond the regions of diaturbed blast waves.

The above discussion logically leads to a consideration of the results obiained from the Shot 12 offset gages at 1,500 and 2,500 feet on the water blast line (see Figure 2.4). These gages were installed for the purpose of detecting the possible cross-feed of blast diaturbances from the desert area to the water area. One method for analysis of crossfred effects makes use of the arrival time and position data in compute interval velocitlea between the desert-water interface and the various gage stations. A summary of these velccities is llated in Table 5.2. The velocltles have been determined asauming blast-

Caso	Lurteos	Oreme Reng	Arrival Tine	Poetuce	Dismen tros [40	Viocity tron Edro	wav-From Trpe
		loen	cec		coen	-	
218	Weler	150	01108	cuan lise	400	87.000	0
18	Deent	180	-104	slatilso	$0 \cdot$		1
18	weser	1000	01898	Sucen lise	400	19.800	1
84	Deeert	1000	0149	Sleat lme	$0 \cdot$		1
2383	Wrier	1850	- 288	Elen Itao	400	1.350	1
293	Desert	1230	- 208	Sen lise	$0 \cdot$		1
23Psy	weler	1500	- 3398	Orten	188	1.360	1
83P3x	weter	1500	- 3118	Orrem	288	8.110	8
2SP3	weler	1500	0313	Seatlise	400	3.900	1
2P3	Deent	1500	0348	aleallise	0 -		1
518	Weler	3000	- 868	Elees lime	+00	2.030	11
18	Deent	3000	- 485	Sicen lime	-		3
29P5	wecer	2400	0.014	Orisen	150	1.130	1
20p5	Weler	2500	- 008	Orten	570	8.200	4
2989	Weler	2500	- 218	Elem 110	400	2.010	1
9P8	Drept	8300	- 100	Slem lime	-*		4

[^0]wave symmetry, so that desert biast-line arrival umea are the asaumed arrival timea at equal radil near the desert-water interface.

If a disturbance traveling over the desert surface is to feed-in energy across the desert-water interface, thle enery would be propagated over the water with the local sound velocity. Table 5.2 Indicates that Shot 12 times of arrival observed at the flrat threo water-line atations (750-and 1,250 -foot ranges) yield propagation velocities 100 high to be identified with conic velocity. Therefore, the firat disturbances as well as a major portion of the presauro-ume hiswry observed at these atationa are free of crosafeed effects. However, Table 5.2 ahows that at 1.500 -foot ground range the offeot gage noareat the interface (25 P 3 Y) ylelds an arrival time which suggeste cross-feed of energy at this gage. The other ofleet gage (25 P 3 X) at thla range and the blast-line gage (25P3) abow later arivala; however. It is probable that the crose-feed is manfest at some ume following blast arrival on the geg recorda obtained at these stations.

The foregoing la aupported by wave-form observations on the water line (Section 4.5.2); that 1s. at 1,500 feet the wator-line ofleet gage closeat to the desert is a Type 1 . elmilar to the desert blast-line record, whereas the other offset gage trace (25P3X) recomblea the meagurement obtalned on the water line.

Analyals of wave forms at 2,000 feet produces evidence of effect of cross-feed upon

Figure 5.13 Maximum overpressure versus ground range, 10-foot level. shot 12.
a blast-line gage record obtained over the water on Shot 12. The unsmoothed records (Appendix B) show that the 27 B gage record (2,000 feet) is not a true Type 1 form because approximately 100 mech after arrival the pressure-Ume trace takes on the appearance of the 7 B gage record (Type 3) which was recorded at the same ground range over the decent. At 2,500-ivot ground range, the interval velocities (Table 5.2) are leas than those for comparable gage at 1,500 feet. However, the trent is the ane. and although the wave forme do not appear to be completely consistent. the Bis. gage are at this same ground range produced similar waveform variations over similar gage-atation separateHos.

In conclualon, it can be established with some assurance that t' o observation over the water line of earlier-thmoidoal arrival fumes and Type 1 wave forme was not due to
cross-feed from the desert suriace. Since these observafions are identified with the propagation of a precursor wave, it can be siated that a precursur furmed uver the water on Shot 12 and was observed at the close-in ground ranges.

A postabot view of the water line, looking toward ground zerv, is shown in Figure 5.17, while Figure 5.18 is a postshot view of the Shot 12 asphalt line looking south tumard ground zero. The highest gage tower. viable just left of center in the photograph. is the Project 1.10 2.500-fout gage station. It appears that the blast wave lifted off chunixs of the surface, leavitig deep pocks in the asphalt. Hr.dever, the pocks are not distrituted In a rad.dom fashion over the line: instead. there is a rather high density out to about 2,000 feet. then a relatively unmarked region out to about 2.800 fent, where a good deal of the asphalt surface is missing.
5.2.3 Overpressure Decay Behind Shock Front. An analytical representation of the overpres.ure profile if the ciassical shock wave at a given distance from an explosion te provided by:

$$
\begin{equation*}
r=r \cdot(1-1 . \therefore 1) e^{-1.1} \tag{is 21}
\end{equation*}
$$

```
Where: p = overpressure at sime t
    pm}=\mathrm{ peak value of the overpressure at t=0
        t = time measured from shuck arrival
    \Deltat = positive phase duration of the blast wave (Reference 16)
```

Equation 5.2 is approximately valid for overpressures not exceeding 25 pai. In a theoretical paper on atrong-shock epherical blast waves (Roference 17). some relations are derived for the pressure decay behind a epherical shock moving through an idoal gas medium. It shows that for peak pressures above one atmosphere the decey is not a simple exponeatial, aince the early portion of the pressure-lime function decays more rapidly thas do the later parts. The resulte of Refereace 17 and Equation 5.2 become Identiced when:

$$
\begin{equation*}
\frac{p_{0}}{p_{1}}=05 \tag{array}
\end{equation*}
$$

Where: $p_{1}=$ ambient pressure in froat of the shock front

Both of these methods of computation are atrictly llmited to the case of free-adr wave propspation. Thus, any application of the methods to sbock phenomena which are infuenced by a ground plane (1.e., In regular or Mach relection reglons; cecesarlly involves en approximation of untoown magnlude. Nevertholese. it 800 ms worthwhile to make some comparisons between theory and experiment using some of the Sbot 12 dach.

Comparisons of the calculated and measured decay of overpressure versus time on Shot 12 are abown in Figures 5.19 and 5.20. Only those reconde which appeared reasenably undieturbed were selected for analyale. Figure 5.19 Includes all of the 8 bot 12 wator llae records which were analyzed for pressure decay. For the rocorde at 750 (21BA) and 1.750 feet (28P10A). Is would be expected on the basis of their hith peak pressures, the method of Referesce 17 agrees better with the experimental resuita than does the method

Fisure 5.14 Result from BRL menouremeate os gage-are. shot 12.

of Equation 6.2. At subsequent ground ranges on the water line (2,500 feet and boyond), the differences between the two computation methode appear amall; however, if a choice must be made. It scems that the method of Equation 6.2 corresponde boat with L . experimental data. The gego recorde at 2,500 (29 PSY and 29P40A) and 2,750 foot (31P3) exhlbit a dollolte nonclasolc bahavior in the first 100 meoc aftor abock arrival. That is, if the measured peak pressure is tation as the basis for subsequent calculation, there appears to be a pressure hump when comparison is made with computed docay. However, It could equally wall be ascumed that these records (1.e. , 29P3Y, 29P40A, and 31 P3) are the result of a rounding-ofl of the more claselcal eharp-panked wave form. If this lattor con-

Firure 5.16 Post-8hot 12, desert line, looking porthest lowerd ground sero.
dillon is considored, the decey caloulation must be bared upon an extrapolated (cee Figure 8.19) peak pressure. It is evideal from the flgure that the decay oomputed from the axirapolated maxdmum pressure agrees well with the experimental reoord byyond about 180 meec.

The Bhot 12 decert-1le recorde (Firuse 8.20) agree well with both methods of 00 mputalion of overprescure decay. 8tsce the peak proseures of the recorde appradmatals callaty Equalloa $6.3 \oplus_{m}=6.6$ pat for Bbot 12), It is to be appected that the two methode would te equivaleal. Figure 8.20 also lacludes one gere reoord (49P40) obenlaed on the asphalt llese. Becauce of the bace-llne oorrectlons which were seceseary for the record. the positre-phase durr.tion is in doubt. For this reasan, the Equation 8.2 decay celculaloa wee performed usiag three posalble positure duratlons; it is obrious from the trure thet the gego record does bot arree with ang of the computed deon curves. Indicating that de: tatlose from the clacalcal preseure-utme wave form were most oompleto over the aphalt surface.

The fact that be Reforeace 17 motbod of caloulating overprescure docary bahlod the sbock front appears to acree bect with appertonest at hich pressures leade to the comolusion

Fisure 6.17 Post-8bot 12, water line, looldng south toward ground 20 o.

Figure 8.18 Post-8bot 18, apphalt lloe, looitigg north toward ground zoro.
that pressure-tume records at closo-in ground ranges (less than 750 feet) would probably arhiblt the peating effect ahown on the 21BA record (Figure 5.19).
5.2.4 Comparisons with Previous Data. These comparisons can be made by considering such properties as presoure-time wave form, maxdmuni overpressure versus ground range, impulse, and positive duration. The comparisons are made using, in all cases, the A-scaled iata. Of course, only desert-line Teapot data are used.

For A-scaled comparisone, the partinent shots may be divided Into two main A-acaled clasaifications: (1) shots which have simiar A-scaled burst heights, but different yields and (2) shots which have similur yields, but different A-scaled burst heights. The descriptune of these pertinent abots are summarized in Table 5.3. The wave-form comparisons

TKALE B.y ghot deecriptione ton thta Companeown

Eat	Tidel	Cotere of lurot	$\begin{aligned} & \text { A-Beded } \\ & \text { Moigm of Burat } \end{aligned}$	Clumiticatios
	4	Hene	mot	
Toares are 0	6.1	500	237	Veravie Yiald
Unemat-Kpoltale met 10	14.6	18	304	cimallar A-araled Matan of Buren
Tumber max 4	10.4	1.090	24	Vartelle Yiad
Unamer-meotric Mot 11	* . 0	1.28	218	Blmalar A-ecaled Molgh of Bura
Tramen mil 18	21	400	136	Vermele Yield
	18.8	200	118	Cunallar A-ecelod Molgm of Burat
Oprim-Esoctiole ater 1	16.8	200	113	memuer Yield
	14.0	184	204	Vartiona A-cealed MoldM of Burn
Onemat-Eroctole Emet	4	2.483	944	Stmatier Yiold
Tramen mex 18	8	400	181	Vertine A-ecelad Bolym of Durat

for each palr of abots listed in the table are Included in Figures 5.21 through 5.24. Beth coordinates of these presaure-time plote have been jormalized to l-kt, sea-level confitions; an attempt is made to compare wave forms from gages at comparable A-scalod ground ranges. Figure 5.21, showing examples of Teapot 8hot 6 and Upahot-Knothole shot 10 wevo-form comparisons, Indicates that although the maximum pressure moesured on the Teapot ahot is algillicanly higher, the wave forms are very almilar. The rame is irue for the Tumbler 8hot 4 and Upehot-Knothole Bhot 11 resulta ahown in Figure . .' it Is notoworting that these latter two ahots had widely diferent yields (3:1). Proceeding to the next eet of wave-form comparizons (Teapot Shot 12 and Upshot-Knothole Bhot 1) shown In Fisure 6.22, It is evideat that at the close-in ranges (about 280 and 340 feet. A-scaled) the pormelized wave forms from the two abota are almliar. Howover, at about 500 feet (A-scaled) the Teapot record dieplaye a prominent second peak which is abeent on the Upabot-Knothole pressure-time result; these results lodicate that greator cifferences in wave form are to be axpected for a given change of burat height for heighte of burst of the order of 100 feet (A-scaled) then would occur at belfate of between 200 and 400 feet. I: abould also be noted that the Toapot normalized peak pressures are consiatently higher, indicating thet fo: dotonationa that havo low A-scaled burat belghte. A-scaled peak prosaures may depend upon weapon yield.

The Upabot-Knothole 8hot 1 and Ettot 10 wevo-form comperieone are included in Figure 5.23. Ae summarized to Trable 5.3, these ahots had sini:l.: Fields but different A-scalod burat heights. The figures abow littin aimileity to wiw' rma; epeciflcally,

.r.fure 6.19 Decay of overpressure behlad abook troat, wator line, 8bot 12.

Figure 520 Decay of overpressure behind shock front, desert and asphalt lines. Shot 12.
the shot 1 prescure-time records exhiblt abock-like pressure rises, whereas the Shot 10 resulte abow alow-rise, compression-like wave fronts, particularly at the closo-in ranges. The last set of wave-form comparisons, shown in Figurn 5.24, Include UpshotKnothole shot 9 and Teapot 8bot 12. The A-scaled burit heighte for the former were too: high for precureor formation (soe Table 6.3), which explajns the diaturbed wave forme
…: observed on the Teapot shot only. The Ifgures ahow the extremely poor correspondence between pressure-time wave forms obtained on these shote: the Upabot-Knothole recorde are conalatently classical, while the Teapot results chow the influence of diaturbing offecte out to about 1,100 foet (1 -souled range).

In addition to wave-form comparisons, the Project 1.10 date may be compared with provious results on the besle of peak overpreasure veraus ground range. Thle comparison is documented is Figure 5.25, where the A-scaled surfaco-lovel peak prossures aro plotted agalnat A-scalod ground range. Included on this figure are wavo-form clasalflcatdons, Ideal overprossure curve (colld line), and the Teapot sbot 12 curve (dashed line). At A-scaled ranges lesa than $1, C 00$ foet, peak prossure data are alpilficantly depressed below Idoal values; the axperimental polata appear 4 rat to merge with the ideal at about 1,200 foot (A-scaled), which corremponds to 7 or 8 pal (A-scaled). There is a lendency for Tumbler 8bot 4 madmum prescured to to notably low at the close-in ranges, a result
 of 30 pal.

Frure 5.22 Wave form onmparisons (A-scaled). Teapot 8hot 12. and Upabot-Knothole 8hot 1.
creastas duration with increased maximum overpressures in the high-pressure region: on the contrary, the shot 12 posltive duratlons correspondirs to pressures near and above 100 pai (A-scaled) are algaificantly bigher than provious date would predict. It is possiblo that the very loas disrations at closo-in gage atalions are due to some uncompencatod inetrmental error, e. E., a abort tho-ablft th the zero-signal reaponse charactorialics of the gare immedietely following abock arrival at the gage. However, it abould be notod that the analyals of the iree-alr case in Roferance 17 prodicts the observed inereace in pocitive-phase durations at the Migher abock atranghe.

Figure 5.23 Wave form comparisois (A-scaled), Upshot-Koothole Sbote 1 and 10 .

The positive-Impulse data shown In Figure 8.27 are prosented in the same manner as were the positivo-duration data. Although the 8hot 6 esphalt-line Impulee data are conalstently too high and outaide the ± 15-percent limlta, the 8 bot 12 data abow no dollnitive effecte of surface pmperties. There appears to be some tendency for the Teapot Projec: 1.10 Impulee date (below 30 pal) to be higher than the composite curve. For A-soaled maximum pressures above 30 pad, the Teapot Impulee reaulte do not disagree almithcandy with provious results; howover, at these highor proseures, It appears that the positive Impulse is always lower than would bo indicated by the axtenaton of the compo site curve to pressures above 30 pal. In addillon, alnce poaltige lmpulee is obtalned by Integration of the pressure-dme rocord, it will be less critically fonveaced by poseible short-time Instrumental diaturbances than will the positive-pheso-duration variable.

5.3 DYNAMIC PRESSURE MEASUREMENT8 q° (pltot)

The geseral metbod of presentation of the Project 1.10 overpresaure data facluded In the previous eoction will be applied to the discusaion of the q° (pltor) measuraracate. first, the effoct of suriace proparties upon the data will be couldered, after which com-

Froure 5.24 Wave form comparisoas (h-scaled), Teapot Shot 12 and Upebot-Krothole 8hot 9.
parisons will be made with avallable resulte from provious abote.
6.3.1 Effocte of Surface Charactoriatice q° (pitot). The plote of mexdmum q° (pitot) preseure versus ground raget fos ghot 12 are abown in Figures 5.28, 5.29, and 5.30. The varlous aymbole on these plots ludicate the maximum \mathbf{q}° (pitot) prossure recorded at each srcund raniso, and the lettors tanalde the aymbole deatganto the wavo-form type ascoolated with asch recordi no letter lnalde a aymbol indicates that the wive form doos not corrospond to any epocifle clasalfication. Agaln, the data bavo boen corrected for plich anglo and Mech number.

Ficure 5.25 A-scaled marimum overpressure, carlace leval, Teapor Shote 6 and 12, previcas ahota, desort line.

The 8hot 12 dati for the wator-lice madmum q° (pitot) prosause abown in Figure 5.28 Indicate that 3 -foot presaures are alpolfcantly heder than those mearurud at 10 feet: bowever, becauce of the steop elope the position of the 3-foot date polat at 2,000 feet ground range hes a profound induence upon the ahape of the curve. The attanuation of peak q^{4} (pitot) pressure with diatance :s quite sovere. The curve of Figure 5.28 indicates a drop in prosiure from about 300 to 3 pat in a ground race interval of lese then 2,050 foet. As atated previously, the water-line q° (pitot) reoorde do not laed themealves well to wave-form claseification, which accounte for the mang blank armbale on Fisure 8.28.

The desert-line q° (pitot) data of Figure 5.29 show an attenuation of pressure with distance which is similar to that observed over the water line; however, unlike the water line data, the 3-foot maximum pressures over the desert appear to be depressed relative to 10-foot values.

Figure 5.30, showing the q^{\bullet} (pitot) results over the asphalt line, is not significantly differeat in appearance from the plots corresponding to the water and desert lines. Theire is apparently little difference in the maximum pressures at 3-and 10 -foit levels: moreover, the decrease in q^{*} (pitot) peak pressure between 2,500-foot ground range (13.1 psi) and $3,000-f 00 t$ ground range $(0.85 \mathrm{psi})$ is most severe on the asphalt line. It is noted that the aingle dica point at 3,000 feet produces the aforementioned appearance of serious attenuation; however, the fact that the 40-foot-level gage at 2.500 feet recurded a depressed q^{*} (pitot) maximum lends some validity to the curves drawn in Figure 5.30. In fact, the obvious consequence of the marked attenuation characteristics (evident in Figures 5.28 through 5.30) is that one or two data points may infuence profoundly the character of tiie best-fit curve drawn through the data. If this danger is kept in mind, the discussion of the composite Shot $12 q^{*}$ (pitot) curves can proceed more proitably.

Figure 5.31 ts the composite graph of Shot 12. 3-fcot q^{*} (pitot) maximum pressures over the three blast lines: the figure also includes the ideal-dynamic-pressure-versus-ground-range curve (Reference 12). Primarily, it is obvious that the q° (pitot) maxima over the three surfaces agree closely at thie first gage station (1,250 -foot gruund range): also, the pressures recorded are larger than ideal at the adme range by about a factor of five. Maximum q° (pitot) pressures approach ideal at 2.500 -fout gruund range on the water line, but on the desert the eariiest indication of agreement is at 3,000 feet. The valuo over the asphalt at 3,000 feet falls appreciably below the ideal; it will be recalled (Figure 5.12) that a severely deprossed peak overpressure was also recorded at this range.

The 10-foot level q^{*} (pitot) compusite for Shot 12, presented in Figure 5.32, Indicates that at this gage helght the effect of surface properties is more syatematic than it the case for the 3 -foot measurements. The pressures measured over the desert are highest: at the close-in 10-foot gago station (1.500 feet) the peak prescure is again larger than ideal by a factor of five. Desert-line q^{*} (pitot) maxuma aro close to ideal at ground ranges of 3,500 and 4,000 feet; the same is true for water-line mesaurements at 2.250 and 2.500 eet. However, in the latter case, the wave forms of the η° (pitot)-time recurds are far from ideal in appearance (sec Figure B.3). Thie suggeata, as pointed out in Section 5.2 .1 In connection with overpressure data, that it is misleading to label a blast wave ideal on the beals of tis maximum pressure only.

The Shot 6 maximur. q° (pitot) data are presented in Figure 5.33, all oblainod from 10-foot-high gages. Because so few measuremente were takea on this shot, the usefulness of the data 1 e restricted to supplementiag the Shot 12 resulte. Figure 5.33 shows that at the closest gage station (1,500-foot ground range) the poak q° (pitot) pressure was bleder over the dessrt surlace: aleo, the prossure exceeded the ideal value at the same sround rage by factors of about four (over asphalt) and aix !over desert). The Sbot 6 \mathbf{q}° pltot) deta, like those of Shot 12. exhibit severe attenuation of man!mum pressure as a function of ground range.

It is possible, with refe:onse to the Shot 12 photographic dale reireted by NOL (Raforence 16). to determise the approxiriate arrival umes at various ranges of what appears to be a dust froat. Upon chocting some of theso duat arrivale againat the pres-sure-lime records obtalned on Projoct 1.10. It appears that some meseured elfocte may be attributed to the dust. An axample is the s-foot-iave! pitot-tube results at 3,000 feet (9P3 and 9Q3 of Figure B.7). The q° (pitot) record (x)3) shows a slow preseure rice fol-

A-SCALED MAXIMUM OVERPRESSURE (PSI)
Mrure 5.28 A-scaled positive phase duration versus A-scaled medmum overpreseure. Teapot shots and 12, previous bots.

lowed (about 30 meec aftor the inltial arrival) by a sharp, high amplitude disturbance. The delay between inltal arrival and the high amplitude portina correeponds well to the NOL photographle data for time delay of dus:-front arrival at this station. The side-on record (9P3) shows only a rather minor indication of duat arrival at a somowhat later tume than observed for the head-on gagc. Thle same behavior is characteristic of several plitt-tube gage stations on the Shot 12 desert line.
$5.3 .2 \mathrm{q}^{\circ}$ (pitot) Positive Impulse. It was realized from previous nuclear test serios that the drag torces and the damage to cortan clasees of drag-sensitive targets in the regions of diaturbed blast waves did not correlate with the resuits anticipated from utilization cf moseured overpressures. Tha limited pltot-tube dynamic-pressure measurenente avaiable indicated, in general. that in the disturbed region, q° (pitot) preasure is substantially higher than would be calculated using classical relationshipa and the messured overpressures. It is well-known that one of the moat prominent characteristice of precursor blast waves, manifest in both dynamic pressure and overpressure measurements, is the marked increase in positive duration and impulse in the region of eevere disturbance. Since damage to drag targets is of great interest, It was thought eqedient to investigate the impulse associated with the q° (pitot) measurement of Project 1.10.

For this inveatigation, rather than attcript to obtian the toin posilive impuise. It was dec!ded that a more uveful purpese would be served if the ampulse-versus-time function were determined for each $q^{*}(p i t o t)$ measurement. The reaults of these successive integrationa are aummarized in Figures 5.34 through 5.38. Sume general statementa can be mado on the basie of these fisures:

1. On Shot 12, out to $2,500-$ foot ground range; the 3 -foot-level results show that the effects of the asphalt and water linee are comparable. while the desert q " (pitct) impulse reaches values as much as ten times larger than those inrilcated on the other blaat llaes (Figures 6.34 and 5.35).
2. At the 10 -foot boight, the impulse $i n$ ordor of jecreaalng value te dosert-acphalt water. the impulee magiludea over the dosert surface are soually three or four times larger than those measured over the agphalt or water surfacea.
3. Oaly at 3.000-foot ground rang (ece Figure 5.37), where the q° pitot) Impulee maximum is about one percent of the largest value measured. do the water-1!.」e daca exceed those over the desert and aephalt.
4. The one 8bot 6 comparisoc (sev Figure 5.38) Indleates that the impulse-time curves for the two blast dines are of the eame form, with the desert-line values conalatently himer.

It is bolleved that the very high q° (pitot) Impulse valuee measured over the dosert surface are caused by the presence of an axcessive ainount of particulate matler carriod alons by the preseure wave. It is furthor believed that this particulate matior affecte the pliot-tube gage as whuld an addilional preasure. In regard to ualas q^{*} (pitot) impulee for damage correlation, some laformation le aupplled by reference to the Téā̄ut rē̃urt ūu dras-larget loveatigillone (Reference 18). To summarize, thone resulta Indicated almilar damast to dray argets on both the water and desert llars of Shot 12, but a alighty more severe dacrage lovel on the aephalt line. The fact that the q° (pitot) impulse curves of Ficuses 5.34 and 5.35 wou': nt bave predicted ihis goneral result eugreate the posesblity thet the factors affocui, the q-impulse meaguremonts are not the same as those which algollicandy induence danato to dras-encildve erceta.
5.3.3 Comparieone with Provious Deta Ualike the altuation with regard to over pronsure measuremeats, there are raly a fow q° (oltot) resulte from provious abota which

Mure 8.27 A-seniod positive impulse versus A-scaled mandmum owipreepure, Taept itoes 0 and 12, previous blote.

can be compared with Project 1.10 desert-line dala. The plut of maxdmum q^{*} (pltot) presaure veraus ground range (A-scalori) is shown in Figure 5.39. Included are wavo-form clasaifications (where possible), the ideal q° (pitot) curve (solld line), and (for Shot 12) the 10-foot-level desert-llne data and curve (dashed line). diso sbown in Figure 5.39 are the avallable q^{*} (pitut) pressure data (corrected for Mach numbir) from previous shots: asmely. Upshct-Knothole Shots 10 and 11. The Upehot-Knothole Shot 10 data at A-scaled ground ranges less than 1,000 feet are probably low (note arrows on symbole) due to suspected gage overload (Reference 6). The remaining Upshot-Knothole data, the Shot 11 result near 800-foot range and the Shot 10 result near 1.500 feot, are In agreement with the Idoal values at these i-scaled ringes. Finally, it is apparent thet, at A-scalod ground ranges less than 1,000 feet, the Tearot Shot $12 q^{\circ}$ (pltot) mardmum pressures over the desert are much greater than have been measured on any prevlous shots.

S.4 PRECURSOR PHENOMENA

The most aigificant alrblast resuite of Operation Teapot, and more specifically. Project 1.10, were oblained where alrblast behavior dopa' 'gd from ideal. Such departures have been attributed to surface and/or thermal effects on blant and may be classilied as precursor phenomen.
5.4.1 Background. Since it was not possible to study the blast characteristics of nuclear expiosions without the effects of accompanylag thermal radiation on the aurface. there were no means before Teapot of experimentally eeparatug the mechenical and thermal efiects on blast. Hich-exploaive tests, which have negilgible accompanying thermal radiation, showed minor blast effects due tc differences in surfice mechanical rellection propertles and surface dust. Surface nuclear explosions, where geometry limits the thermal radiation locident on the blast surface, gave results slmilar to INT teate. In any case, the extrome doviatlons from ideal blast phenomena which were obcerved on several low-hurat-helght nuclear detomatlons are far greator than the perturbatlons observed for s.aled TNT teats or fnr surface nuclear toste over the same kiode of surfaces. It therefore appears anfe to sesume that thermal radiation is the principal caues of blast wave depariures from ideal. Of course. the properties of the aurface. includins dust. can have a profound infusnce upon the degree to which the thermal radiation affects blast.

It the been customary to use the term precureor to describe the blast cooditloas ropresuctative of low burate where the thermal offects on blast aro of major importance. It must be noted that the diaturbing effects on blast can be aigriflcant without the actual cederation of a precursor wave. or outalde the range of the precureor region. The torm precureor is used frequeolly in a ceneral eense to describe the wbole region where the thermal effecis on blast cause alpillicant departures from the ideal cace. In come circumstasces toe term aonideal is used to describe thls babavior.

Anomaloue blat behavior wae observed on moat nuclear loat serles prifor to Teapot. The role of thermal effects on blast was first clearly dellonatod on Tumbler-8mapper. where the precursor ptenomenon was ideatilled Subwequent rearamiantion of Buster and Greeabouce blat measursments conflrmed precureor axistence and abowed similar -hermal perturbatione oo blast. it iemalsed for the Upebot-Knotbole test eertes to inveatgate the offects of such noaideal binat waves on largels and to study further the asso clated basic-blast phenomene Much additlonal valuable Information was otealzed durtag Upebot-Knothole which led to qualleatre explamatione of the thermal effocts on blast waves: bowever. It was the objectivo of tie Teapot series to put thle thermal pbenomenot

Figure 5.29 Maximum q^{*} (pitot) pressure veraus ground range, desert line, Shot 12.

Figure 5.28 Meximum q^{*} pliot) pressure veraus

on a firmer quantitative basis and to aid in the prediction of the blast behavior of nuclear weapons (at low burst heights) over surfaces other than those characteristic of desert areas.

The blast disturbances observed on previous test serles have been explained in part, qualitatively, by the hypothesis that the thermal radiation creates a heated layer of it adjacent to the ground surface prior to shock arrival at the point of observation. Analytical considerations and some supporting shock-tube experiments indicate that a conventional shock wave is markedly influenced by passage into a region baving a nonuniform temperatur. or, more particularly, a nonuniform sonic velocity.

To date there has been no adequate description of the effective mechanism of heat transfer responsible for the generation of the assumed thermal layer. Experimental measurements on previous nuclear iests and additional measurements on Teapot were designed for the purpose of inveatigating the properises of the thermal layer prior to shock arrival. Such measurements were only moderately successful; general instrumentation problems, plus turbulence and atmospheric instability effects characterisuc of the heated region being investigated, have reduced the value of these measurements in a quantitative sense. Therefore, although measuremenis have proven t.e exiatence of a preshock thermal distrubance near the grourd, details concerning temepratures, temperature gradients, and height of effective layer at shock arrival have been inconcluaive.
5.4.2 Mesbured and Computed Prashock Temperature. A sizable fraction of the total energy released from a nuclear detonation is emitted in the form of thermal radiaUon. Large amounts of thermal radiation are incident upoa the ground before shock arrival, and thus, the existence of a nenr-surface thermal layer appears to be a sound asaumption. Actual measurements of preshock air temperatures (Project 8.4) and pre shock sonic velocities (Project 1.5) on Teapot Shot 12 appear to be incompatible; in additlon, noither set of these data appears to describe adequitely the preahock thermal picture in an underatandable manner.

If a near-surface thermal layer is assumed prior to ahock arrival, it is possible to sot up analytical relationships which san be used to deduce the general characteristic of the thermal layer from the observed hast behavior. Temperatures computed in thls manner are, at best, grose avorages and apply only to conditions which exist just prior to shock arrival at the range in queatlon. The relationshipa based upon blast parametera can be divided into three maln classifications: ':) those using shock wave equatlons, measured Initial overpresaures, and some average wave-front ortentation angle (called presaure calculation); (2) those using the assumption that wave propagation velocity equals the conic velocity characteristic of the medium (called sonic calculation); and (3) those using only angles of ahock-wave-front orientation (called angle-of-front calculation). These three methods of approach will be discussed in order.

Presaure Calculation. Withashock front moving through a medium of consuant γ (ratio of specific beato), analyais yields:

$$
\begin{equation*}
\frac{P_{2}}{P_{1}} \cdot \frac{2 \gamma}{\gamma+1}\left[\left(\frac{v \sin \theta}{c_{1}}\right)^{2}-1\right] \tag{5.4}
\end{equation*}
$$

(ISd) 3mssjud JiตvmaO mnตixpm

Figure 5.30 Madmum q^{*} (pitot) pressure verius

Where: $p_{2}=$ initial overpressure behind the shock front
$\nabla=$ horizontal trace velocity of the front
$\theta=$ acute angle which the shock front makes with the ground surface
$C_{1}=$ sonic velocity and pressure of the medium just ahead of the shock front (see Figure 5.40)
$p_{i}=$ conic velocity and pressure of the medium just ahead of the shock front (see Figure 4.40)

From the measured overpressures and the photographic data (Reference 15) showing the orientations of the shock fronts. Equation 5.4 may be used to compute C_{1}. Then the preshock temperature T_{1} is resated to C_{1} by:

$$
\begin{equation*}
\left(\frac{c_{1}}{C}\right)^{2}=\frac{T_{1}}{T} \tag{5.5}
\end{equation*}
$$

Where: $C=$ sonic velocity corresponding to ambient atmospheric conditions
T = absolute temperature corresponding to amblent atmospheric conditions
The method may be extended somewhat to incorporate the assumption that at the ground plane the flow must be parallel to the surface, i. e. $\theta=90^{\circ}$. Then, for surface-level temperature calculations, Equation 5.4 reduces to:

$$
\begin{equation*}
\frac{P_{1}}{P_{1}} \cdot \frac{2 \gamma}{\gamma+1}\left[\left(\frac{v}{C_{1}}\right)^{2}-1\right] \tag{5.6}
\end{equation*}
$$

If an error analysis is made on Equation 5.4, It is concluded that for overpressures up to about 30 psi, errors in the computed C_{1} are not very sensitive to errors in p, ; bowever, errors th the computed p_{2} are quite sensitive to orrors in C, v, and θ, if θ is small.

Sonic Calculation. This method is based upon the existence of a compressiontype acoustic wave. If this condition is fultilled, the propagatica velocity of the initial - disturbance pressure) equals the sonic velocity of the medlum, and Equation 5.5 is im! modiately applicable for the tomperature calculation. Hence:

$$
\begin{align*}
& \left(\frac{v \sin \theta}{C}\right)^{2} \cdot \frac{T_{1}}{T} \tag{array}\\
& \left(\frac{v}{C}\right)^{2} \cdot \frac{T_{1}}{T} \tag{array}
\end{align*}
$$

 ground range, Shot 6.

Figure 5.32 Maximum q * (pltot) pressure versus

i

This calculation (which assumes the wave propagation velocity to be the same as the sonic velocity) if applied erroneously to a shock wave would yteld temperatures much larger than those computed from the preesure-ralculation ur angle-of-front methods.

Angle of Front. The assumptions inherent in this method of temperature computations are, In the shock wave region: (1) γ is constant; (2) the precursor front is a shuck front which obeys Rankine-Hugoniot relations; (3) the peak pressure is everywhere constant along the shock front: and (4) the precursor front moves along with constant shape; i.e. every part of the frort moves at the same horizontal velocity. On the basis of application of the method to a compressional wave (rout (the acoustic case), only assump!'ons (1) and (4) are necessary. Referring to Figure 5.41, Equation 5.4 can be writte: for conditione at the two pninte of interest in the shock region.

Region A:

$$
\begin{equation*}
\frac{\rho_{A}}{\rho_{1}} \cdot \frac{2 r_{A}}{r_{A}+1}\left[\left(\frac{v_{A}}{c_{A}}\right)^{2}-1\right] \tag{59}
\end{equation*}
$$

Region B:

$$
\begin{equation*}
\frac{\rho_{B}}{\rho_{1}}=\frac{2 r_{B}}{r_{B} \cdot 1}\left[\left(\frac{c_{B}}{r_{B}}\right)^{2}-1\right] \tag{15101}
\end{equation*}
$$

Where: $C_{A}, \bar{C}_{B}=$ sonic velocitiec ahead of the shock at points A and B.
If $\gamma_{A}=\gamma_{B}$ and $p_{A}=p_{B}$ (see assumptions above), then:

$$
\frac{v_{1}}{r_{4}}+\frac{v_{1}}{r_{i}}
$$

And, if all points on the wave travel forward at the eame horizontal velocity v then:

$$
\begin{equation*}
v-\frac{v_{4}}{\sin \theta_{4}} \cdot \frac{v_{1}}{\sin \theta_{1}} \tag{512}
\end{equation*}
$$

Equatlons 5.9 and 5.10 reduce to:

$$
\begin{equation*}
\frac{C_{4}}{\sin \theta_{4}} \cdot \frac{C_{1}}{\sin \theta_{1}} \quad C_{0} \quad \frac{\sin \theta_{1}}{\sin \theta_{4}} i_{4} \tag{15131}
\end{equation*}
$$

If It is assumed that close to the ground aurface and within the thermal layer the shock front is perfendicular to the ground plane (Figure 5.41), then (Refereace 7):

$$
\begin{equation*}
\frac{v}{\sin \varphi}-v_{1} \cdot \quad \frac{v}{v_{1}} \cdot \frac{c}{C_{1}} \cdot \sin \phi \tag{array}
\end{equation*}
$$

Figure $5.34 \mathrm{q}^{\circ}$ (pitot) Impulse versuan time, 1,250 feet -1.50^{\wedge} feet 1,750 feet. SLot 12.

This last equation was used when, on the or sck photographs, a portion of the pracursor wave front was obscured by dust near the ground surface. It is obvious that Equatica 5.14 will yield higher preshock sonlc velocitles (and temperatures) than will Equation 5.13. Equation 5.13 applles if the wave is continuously a shock front from A tu B or (directly from Equation 5.7) a compression wave from Atr B. If the wave front is a compression wave near the ground and a shock wave at digher elevations, as is sometimes the case, Equation 5.13 is in error. If the shock wave merges sharply with the compression wave at E, then the propagation velocity $v_{E}{ }^{+}$slightly above E (In the shock region) will be greater than the propagation velocity $\mathrm{v}_{\mathrm{E}}{ }^{-}$slighids below E (In compresston region) due to the overpressure; l.e.:

$$
\begin{equation*}
\left[v_{i}-i_{i}\right] \text { \& } v_{i} \tag{515}
\end{equation*}
$$

If the horizontal propagation yelocity remains a constant on both sides of E (which it obviously must) then the wave front must contain a cusp, slace:

$$
\begin{equation*}
v=\frac{v_{i}^{-}}{\sin \theta_{i}^{-}} \cdot \frac{v_{i}^{i}}{\sin \theta_{i}^{*}} \tag{array}
\end{equation*}
$$

And hence, using Equai!on 5.15:

$$
\begin{equation*}
e_{i}<e_{i}^{\circ} \tag{array}
\end{equation*}
$$

In the compression region of Figure 5.41:

$$
\begin{equation*}
v \quad \frac{\omega_{0}}{\sin r_{0}} \frac{v_{0}}{\sin \sigma_{i}}=\frac{c_{0}}{\sin \theta_{0}} \tag{518}
\end{equation*}
$$

In the shock region from Equation 5.13:

$$
\frac{c_{4}}{\sin c_{4}} \frac{c_{0}}{\sin \theta_{B}} \cdot \frac{c_{i}}{\sin \theta_{i}^{\circ}}
$$

And bence from Equation 5.17:

$$
\begin{equation*}
\left[\frac{c_{4}}{\sin \sigma_{4}} \cdot \frac{c_{1}}{\sin c_{1}}\right] \times\left[\frac{c_{1}}{\sin \theta_{8}} \cdot \frac{i_{0}}{\sin \theta_{0}}\right] \tag{520}
\end{equation*}
$$

Or:

$$
\begin{equation*}
\frac{C_{4}}{\sin C_{4}} \sin C_{0}<C_{0} \tag{array}
\end{equation*}
$$

Figure $5.35 q^{\bullet}$ (pitot) Impulse versus ume, 2,000 feet $\mathbf{~} 2.25$ feet Sbot 12.

Thus the computed sonlc velocity using Equation $; 13$ will be lese than the actuad monle veisclty where ier polite A is in a shock region and point D is in a compression region. This error is proportiond to the ever-velocity caused by peai overpressure and herice the Inequality of Equation 5.21 increases with overpressure.

Now that the main Hements and limitatiuns of the three methods have been established, the temperature calculations from Shot 12 data may be analyzed critically. Tables 5.3, 5.4. and 5.5 present the results of the computed temperatures alung the three Shot 12 blast lines. In each table. the source of data for the temperature calculation is given In the appropriate column heading. In T. a 5.3 and 5.t. the column headed Equation 5.4 contatins several temperature values in parentheses - It was sometimes difficult to choose a sirgle unamblguous maxdmun pressure assuclated with the precursor wave. Occaslonally, therefore, computations were carrled out using the two most likely cholies. The last column ci each tible lists what is considered as the best value of cumputed tenperature: this choice to based upun the types of pressure-lime record ubserved at each station: i.e.. a shock-type pressure rise would suggest that the best temperature calculation is either the pressure method or the a.gle-of-íront method, whereas a compressiontype pressure-time hintory points to the sonic method. Naturally. the so-called trans iun furm of record presents a problem; however. since it was stressed that the angle-otfront method was equally applicable to the shock or compression cases, it would seem that these angle-of-front temperature calculations, where avallable, should induence the best value cholce in a transtition region. In the tables. the best values in parentheses are based upon rather weak assumptions and are Included only as approximate temperatures.

Figure 5.42 prerents the best-value near-surface temperatures plotted against ground range for the three blast lines of Shot 12 . Although the data are meager and of queatlonable accuracy, scme general statements can be made:

1. Near-surface preshock temperatures at ground ranges between about 650 and 1,000 feet are comparable over the asphalt and desert llnes.
2. The greatest dlacrepancy of computed preshock temperature over the desert and asphalt surfaces occurs at 1.500 -foot ground range.
3. At 1.500 -foot ground range, computed preshock temperature over the water surfacu is not aignificantly less than the desert-ifine surface temperature; however, at 2,500 feet. the value over water is severely depressed with relation to the desert data.

It may be significant that the surface preabock temperatures pt close-in stations over the desert all bunch around values in the $1,500 \mathrm{C}$-region. Reference to the data handbooks (Reference 19) shuwe that many of the common desert-soll constituente (e.g., sllicon oxide, alumina sllicate, etc) possess meling temperatures in the range 1.500$2.000{ }^{\circ}$ C. Ths auggesta that the chemical composition of the surface material might inQuence the maximum tenperature rise prior to shock arrival.

One additional plece of evidence pertinent to the analyals may be obtalied from a theoretical calculation of the preshock surface temperature on the desert line. The maxImum temperaturiarloe of the alr at grade level during Tumbler has been shown to be correlated with the total therral energy dellvered nurmal to the surface divided by the square root of the tlme tc the second thermal maxlmum 1.e. . $Q_{n}+\sqrt{l_{m}}$ (Reference 20). Since shock arrival docs nct appear to correspond to the time i:t which the surface temperature is at maximum, the above temperatures must be onrrected by the method outlined in Reference 21. Pages 16-18.

Slace thermal-yicid measurementa were not a frimary measurement on Shot 12. thermal yield and time of the secoad thermal maximum were determined from Refereace 22. Thermal yleld may be calculated as an alr burst (8.5 kt) or, slace the maxdmum

Fisure $6.36 q^{\circ}$ (pilot) tmpulee versue ulme, 2,500 foet, abot 12.
flreball radius exceeded the height of burst，by the method of heference 22．Page 47. （ 6.5 Kt ）．

Temperatures corresponding to both these ylelds were computed as follows：
$Q_{n}+\sqrt{t_{m}}$ was found for each station，ascuming the cosine law to hold．The finaximum temperature rise was found from Figure 8 o！Reference 20．From Figure 5 of Reference 21．the ratlo of thme of maximum temperature rise to tlme of thermal maximum was

Ground Rang	Arrivel Tlae	Hotrm	Computallin mormode					Trpe of wow	son Yale
			$\begin{aligned} & \mathrm{Eqm} \\ & \mathrm{Bt} \\ & \text { gel } \\ & \text { Dace } \end{aligned}$	$\begin{aligned} & \text { Eq } \\ & \text { BOL } \\ & \text { NOL } \\ & \text { Dels } \\ & \hline \end{aligned}$	Iq． 812 8 N Dala	$\begin{aligned} & \text { yon } \\ & \text { sit } \\ & \text { sns } \\ & \text { Daca } \end{aligned}$	$\begin{aligned} & \text { top. } \\ & \text { s } 1 \\ & \text { oni } \\ & \text { Deca } \end{aligned}$		
cost	∞	foot	－ \mathbf{C}	－ C	－C	－C	－C		
$0 \cdot 9$		0		1.180					1.108
736	0.104	0		1.368		0．100		smat	2．308
180		\bullet		1.818					1.011
1.000	0.140	0		1.461		6． 200		Pock	1，44
1.200		－		1.084					
1．8：0		1	100°			4.106		broct	（160）
1.500	038	0	850	011	500	8.600	1.560	－beck	400－300
		3	40				1.000	evect	150
		10	17				316	Trene．	19－313
1.700		－		918					
1.100		10				1.450	（440） 9	Trase．	（－460）
2．000	－483	\bullet	12	285	138	810	180	Trese．	136－390
		3	19				108	Trame．	19－109
		10	28				18	Trees．	22－12
8.280		10				30	（80）	Trase．	（10）
8.800	0.760	\bullet	－ 20×-601		－ 10	0	87	Come．	87－80
		1	O－60）				88	Comp	28
		10	－ 10×-401				20	Treme	－ 30
		36	－（4－40）				18	Trace．	－ 38
		∞	coll				18	Traes．	－ 0
8．000	1.108	－	13		60	4	46	ごom	4
		1	11				＋	smet	11
		10	－20				－10	duet	－ 80
2．200	1.018	\bullet	30		30	$\bullet \bullet$	18	Buct	20－80
		10	4					meat	上
4．006		2				141		geot	
4．E00		－	－10		30	41	38	crect	30
		3	－10					craet	

found to equal 2．4．＇Using the observed tlme of arrival，the ratdo of time of arrivai to tlme of madmum temperature was computed．Tben uplag Figure 3 of Referonce 21，the temperature rallos may be found and the temperature at abock arrival computed．These results are shown in the table below．Temperutures at atatlone closer than 2,000 feet are not tabulated due to the tequous nature of the calrulatlon to these regtoce．Note thas the values th the table arr largor than those given by the abock－wave calculation．

[^1]

Figure $5.37 \mathrm{q}^{\circ}$ (pltot) impulse veraue time, 3,090 feet, Shot 12.

Figure $5.38 \mathrm{q}^{\bullet}$ (pltot) tmpulse versus time. 1,300 feot, 8 bot 6.

Ground	Surface Temperature, Desert Llae	
Range	Tbermal Yield	Thermid Yield
	8.5 kt	6.5 kt
feet	$\bullet \mathrm{C}$	$\bullet \mathrm{C}$
2,000	1.300	825
2,500	445	200
3,000	100	75
4.000	40	30

Siace the computed temperature is determined on the basis of coaditione ohtalaing at shock arrival, It is obvious that the computatione over the different blast lines, although they refer to the amme ground raige, correspond to different absolute imes. Therefore, a legitumate critictsm of the Flgure 5.42 preseatation of temperatures is that at the anme ground range, temperatures over as it alt are determined at times sfgallicanlly earller than those computed over the desert. So. to complete the analysis. Figure 5.43 preseals the computed temperatures as a function of arrival time for 8bot 12. Thls presentation indicates a rather consiatent behavior over the three blastline aurfaces - it is posa'ble to draw a aingle average curve which agrees well with the derlved temperature data. The geaeral form of this curve is a Dat maximum out to about 0.2 second. followed by a eherf drep in temperature to about 0.5 second, and then a alower decline out to approximately amblent values at 1.6 second. It is noteworthy that on the time plot of Figure 5.43 the asphalt data near $2.000^{\circ} \mathrm{C}$ and the water temperature near $400^{\circ} \mathrm{C}$ appear quite compatible with the remalning results - oaly at later arriral linea do the watur line preshock temperatures fall well below the average curve.

To conclude, it can be atated that a careful analyals of alrblast data will yleld some useful loformation concerning preabock .emperatures near the ground aurface. It would be deairable ln future operations to obtaln more complete data from which to comprite wave-front ortentations, in addition to the more conventional preseure-time documentation.
\checkmark
5.4.3 Precursor Development. Although much attention hen been drected toward the atudy of the p.ecureor wase, its formation and development. the ortgin and mechaleme reapoasible for the piesomenon bave not been clearly expiained jomeques. thoas which are as yet unarawered are: Can the beated-layor theory predlct the formatica ard davelopment of the precursor wave trom a particular weapoc detonated over a partcilar aurface? Does the beated layer concept exclude the exlaten'e of a oo-called thermal-sbock wave? What is the ortsth of the precursor wave? How do precursor phenomena scale? Are there menalagful correlations in the detalled results obtaised on precursor-produclar auclear weapon tesis? These quealioas whll be coaldered briedy in the dl. asion which followe.

Coasidering Argt the nuclear explosion an a source of thermal radiatloa, it is pertineat to tovestigcte the dymanlc effects produced ta medium as a reault of heas release in the medtum (Reference 25). (Reference 24 deals with the problem of presture waves senerated by add jon of beat in a gaseous medtum and oblalne the orect solution of an idealired problem in which a Onlte amount of heat is released unLformy at a section of a tube wibl a given rate; from thle solution, atreagth of the

Figure 5.39 A-scaled mardmum q° (pitot) precaure, $10-1001$
level. Teapot shots 6 asd 12, prevtous abole.
shock generated is computed. The basic mechanism ty which pressure waves are produced by hea: addition is that when heat is added to a volume of gas, the density of the gas is in general reduced. This causes an expansion of the volume occupled by the heated gas, which expaneion produces the pressure waves.

In se-king the exact solution to the two-dimensional problem, Reference 24 characterizes the undisturbed medium by two thermodynamic parameters, the pressure p and temperature T. Since the velocity of sound a In the undisturbed medium is uniquely related to the temperature T, p and a may be used as the two parameters characterizing the undisturbed medium. The strength of the shock wave can be described in terms of the pressure ratio p_{2} / p_{1} across the shock, where p_{2} is the preseure immediately behind the shock. It is clear that, In general, the strength oi the shock depends upon the rate of heat release per unit area S. the state of the undisturbed medium being sitaracterized by p and a as well as by the time t. That is:

$$
\begin{equation*}
\frac{p_{2}}{p_{1}}=F(S, a, p, p) \tag{S22}
\end{equation*}
$$

The viscous and heat-conductive effects have been neglected in Equation 5.22. Because of dimensional considerations it is necessary io write the above relation as:

$$
\begin{equation*}
\frac{p_{2}}{p_{1}} \cdot F_{1}\left(\frac{S}{a p}\right) \tag{523}
\end{equation*}
$$

That is, the shock strength must be indcpendent of the explicit time t, which is actually a direct consequence of the fact that there is nettber a characteristic time nor a relevant characteristic length in the problem. The derivation ytelds:

$$
\begin{equation*}
\frac{S}{a p} \cdot \frac{2}{\gamma-1} \frac{p_{2}}{\mu_{1}}\left(\frac{r_{2}}{r_{1}}-1\right)\left[\left(\frac{\gamma+1}{2 \gamma}\right) \frac{\mu_{2}}{r_{1}}, \frac{\gamma-1}{2 \gamma}\right] \cdot 1 \tag{528}
\end{equation*}
$$

The tabulation below lists values of $S / a p$ computed fin selected p_{2} / p_{1} ratios. Also, shown to the tabuiation are the corresponct... \cdots rprnss::rs $p=p_{1}+p_{2}$ and S quantitles; the latter are determined on the basis of $a=1,100$ ps and $p_{1}=14.7 \mathrm{psl}$. The heat dellvery rate for suinstantlal pressures is not extraordinarily large when compared with thermal energies delivered by nuclear explosions.

P_{2} / P_{1}	$S / a p$	p	S
		$p 81$	$\mathrm{cal} / \mathrm{cm}^{2} \mathrm{sec}$
2	7.3	14.7	42
4	31.8	44	180
6	65.2	74	370
8	105.7	103	600
10	152.5	132	870

Fifure 5.40 Shock front dlagram for pressure calculation of preshock temperature.

Figure 5.41 Wave front dlagram for angle-of-front calculation of preabock temperature.

With thls analysis in mind. It is possible to hypothesize concerning the observed propagation velocitles of precursor-forming shots. Consider the four ground-range retions shown on Figure 5.44. Ir each region It is postulated that the velocity of the inltial disturbance is governed ty different conditions. Now suppose that a pressure wave may be created by addition of beat w the air near the ground (as described in Seference 24) and that there is a threshold criterion which is related to the dellvery of thermal energy to the ground. Then, by virtue of the inverse square law for radiation and the time depeadeacy of radlant fux, the threshold will be surpassed at different gruund ranges at various times. That is. time of arrival and a velocity can be assigned to the threshold condition and beace to the generated pressure wave. The velocity of this thermal pres-

TABLE B ABPMALT-LNE COMPUTED TEMPERATURES FOK 8HOT 12

- Ueos mot rear tron ando min.

oure wave, vd, an a function of ground range will be markedly influenced by the cholon of the threshold criterion. However, the mechanism by whlch the thermal dux la related to the pressure wave is of no mriter; all that is necsssary is to postulate the existence of such a phenomenon.

Reforring to Figure 8.44 and Region I, suppose the velocity of the incident wave along the ground (or that of a Mach abock), V_{1}, le Initially greator than V_{d}. This condition will undoubtedly be aatiafled at ame weapon burat belght, alnce $\mathrm{V}_{1}-\infty$ at ground $2 e r o$ $(G=0)$ and there is some trme lag before an appreclable amouat o! thermal energy is dellvered to the medtum near ground zero. If $V_{!}>V_{d}$ at $G=0$, then the incident wave will outrun the thermal diaturbance untll the arrival timiv are equal; bence In Region I,

Figure 5.42 Cumputed preshock tomperature veraue ground range, Ehot 12.
$v=v_{1}$. Fur the thermal disiurbance to catch up, v_{1} must drop below v_{d} at some range. The existence of Region II depends on a subule relationship between yield, helght-ol-burst. surface properties, and the mechantsm of the generation of the thermal pressure wave. For instance. If the helght-ol-burst is too high, vi may never become less than v_{d} and a thermal pressure wave would not be observed in Region II.

In Region II (Figure 5.44). $v_{d}>v_{1}$ (Incident or Mach stem velocity, as the case may be) and $v=v_{d}$. Also. in this region the thermal pressure wave is a shock wave; however, the pressure-time records now show a precursor because the disturbance is traveling faster than the horizontal component of the incident wave velocity. The precursor wavefront angle or angles adjust themselves to maintain the proper geometrical relationshlps between local sonic and wave velocittes. The apparent discontinulty in the velocity curve at the range separating Regions I and II may be resolved by showing a hypothetical arrival-time-distance plot over the same region. Figure 5.45 indicates how reasonable arrival-time data could result in very abrupt velocity variations.

Returning to Figure 5.44, it is apparent that in Regicn II the sonic velocity ahead of the wave is increasiag steadily as more heat is added to the medium. When $v-C$, the wave spllin out in the usual manner under these conditions. and the shock front degenerates into a compression wave. The tue of the comp.ession wave (near ground surface) now propagates with sonic veloctty (Region III) untll the compression wave inevitably shocks up and $v>C$ due to overpressure (Region IV). The tabulation below summarizes the four regions of interest:

Region	Wave Corms	Propagation Velority	Precursor
I	shock-type	High (v>>C $)$	No
II	shock-type	High	Yes
III	compression-type	$V=C_{1}$	Yes
IV	shock-type	$V=f(p)$	No

Nuw that the hypothesis has explained some of the details of the precursor velocity pleture, It wruid be profitable to atterapt to determine how the phenomena mav scale. i.e., to dete.mine if the aata from various tests fall into any consistent pattern or syatem.
5.4.4 Precursor Arrival- Time and Velocity Characteristice. If arrival-time data are plotted versus alant rasge on logarithralc coordinates. 18 in Figures 5.46 and 5.47 . some detalls of behavior are revealed which are not apparent in Figure 5.1. The precursor arrival data were taken from Project 1.10 pressurs-time resulte and the NOL photograply near the ground surface. Tbe Inctdent wave ard ideal arrival curves were constructed as prevtously explained. Evident in Figures 5.46 and 5.47 is the fact that the inltal slope, correrponding to the incident wave arrivals. Is only slightly less than $5 / 2$ whereas the precursor data indicate a consistent $3 / 2$ slope in the indial portions. Altbnugh Teapot Sbot 12 data are not sufficient close to the point of precursor formation ic jusufy extrapolation of arrival times in this direction, critical examination of other precursor-forming shots. particularly Tumbler Shot 4. Upshot-Knothole Shot 10 and Buater 8 iot Charlie, confirm the fact that Indial $3 / 2$ slope is indeed quite conalatent.

The intersection of the precursor curves with the incident gives a good indication

Figure 5.43 Computed preabock temperature versus arrival tlme. 8bot 12.
of the time (or ground range) at whlch the precursor forms over each of the surfaces conaldered. In E!gure 5.i3, the curve correbponding to the water-15: $=$ dnta exhibits the same $3 / 2$ slope as observed for the desert and asphalt data; howerer, the water curve Intersects the incident-wave curve latest (at about 710-foot griund range), and it seems to begin to deviate from the $3 / 2$ slope near 1,000 -foot range. This result would indicate that, although the effect was short-lived, a true precursor wave was formed over the water lise on Teapot shot 12. The desert and asphalt curves appear to persist along a 3/2 olope out to about 1,500 -foot range.

Figure 5.47 shows only one Teapot Shot 6 curve (for asphalt) corresponding to the region of precursor formation. This is explained by reference to the Shot 6 area layout (Figure 2.1), which indicates that ground zero was located so that about 500 feet of asphalt suriace was interposed between the shot tower and the desert line. Thus, the 8 bot 6 precursor formadion plcture may be considered only on the basis of an asphalt surface. It is further fndicated in Figure 5.47 that the differences in surface characterletics (desert versus asphalt) become manifest over ground range distances of the order of 150 feet, e.g., the asphalt pad ends at 500 feet, and the flrat significant differences in tumes of arrival are ohserved at about 650 feet. The reverse situation existed on Teapot 8bots 1 and 9 where about 520 feet of nonasphalted area was interposed between ground zero and the asphalt pad of the asphalt line. Initial precursor formation on these linen followed desert behavior uatll the asphalt pad was engulfed. Since Shot 1 arrivaltlme diata indicate that a presursor did not form over the desert at this height of burst, the asphalt-line precursor over-velocity is more suppressed than on Shot 9, where a precursor did form over the Interposed desert. These concluslons are consistent with the results described in Section 5.2 .2 which dealt with the efiects of localized changes in surface properties.

The similarity of the arrivai-time-slant-range curves (Iggures 5.46 and 5.47) sugests that a ceneralized relationship exiats of the form:

$$
\begin{equation*}
\therefore \Delta K R^{3 / 2} f(K) \tag{array}
\end{equation*}
$$

Where: $t=$ the arrival time (A-scaled)
$\mathbf{R}=$ the slant rance (A-scaled)
B = constant dependent on beight of burst and/or yield,
$\mathrm{K}=$ a surface constant whleh dependa on the surface characteristics, but should not change with distance over the surface

The velocity of propagation in the horizontal plane, 1.e. . the precursor velocity (A-scaled), Is:

$$
\begin{equation*}
\text { v. } \cdot \frac{R}{C} \frac{d R}{d t} \cdot \frac{2}{3} \frac{R^{K}}{!} \frac{1}{S K\left(f+R f^{\prime}\right)} \tag{5.26}
\end{equation*}
$$

Where: $G=$ ground range
1- ditrentiation with respect to R.

Multuplying each alde of E uation 5.26 by t from Equation 5.25, the coneinate B and K aro eliminated:

:.....:
.:..:
.....
.

Figure 5.44 Schematic diagram of propagatdon volocity versue ground range.

Mrure 6.45 8chematdo dacram of arrival the verme ground range to region of rapidy changing reloaity.

$$
\frac{V, t G}{R^{2}}=\frac{2}{3} \frac{f}{\left(!+R f^{\prime}\right)}-\frac{2 J(R)}{3}
$$

Where: $J(R)=$ a new function of slant range.
Note the left side of Equation 5.27 is Ladependent nf scale factors.
Figure 5.48 is a plot of the quantity $V_{X} t G / R^{2}$ versus R for Teapot Shot 12; Figure 6.49 a plot for Upshot-Knothole Shots 1 and 10. For these shots, definitive time-ofarrival data are avadable from which accurate velocities could be determined. Refereace to Figures 5.48 and 5.49 Indicates that the points fall cluse to a singie curve, as well predicted by the forcgoing analysis. Decidedly different eurface properties are represunted in the data of Figure 5.49; Teapot Shot 12 asphalt and desert data are included, as well as data from a shot detonated over the Yucca Flat area (Upabot Knothole 8bot 1). The consiateacy of the velocity-distance pattern in these figures Illuatrates the validity of a curface-constent concept. In summary, It appears that although the surface constante of the surfaces considered here are different, the differences do not seem large.

8lace Project 1.10 pressure-time data from Teapot Shot 6 are not sufficiently extensive for determination o! the shock-velocity-versus-distance function, it is necessary to look e'sewhere for time-of-arrival data. The NOL photographic data yield pre, ursor arrival Hmes over both the desert and asphalt surfaces of Shot 6. Ubing these data, a beat-Dt arrivai-idme curve is drawn through the points, and shock velocities are then determined employ!ng the difference method (Refereace 14) proviously described (8ection 5.1.1). Figure 5.50 shows 8 bot 6 data plotied on the ame coordinates as Figure 6.48; also Included oa the Shot 6 plot is the curve from Figure 5.48. Even though large apparent variations in instantaneous veloctty result from reduction of the photometric data, the general irende are consistent.

If the forogolng figures and analyses can be considored representative of what occurs on a precursor-forming shot, It cas be concluded that pressure-lime meaeurements on Teapot 8 bots 6 and 12 were sot obtalned at close onough range to detect the formation of the precursor wave. Based upon the formation hypothesis offored here. It is expected that il gages were installed in the regton of regular rellection. the gage records would regteter T)pe 0 (clasic) wave forms followed by Types 1, 2, etc., as the precursor forms and develops. It is belleved that this behavior was observed on the Tumbler 8bot 4 close-In pressure-time results. The NOL gage (Reforence 25) closest to ground zero (8tation 7-200 at 230-ioot ground rauge) on the precursorforming sbot registored an arrival tume and pressure-time hiatory which inchcated ihat themetatirineat was obtalned jugt prior to the formation of the precursor wave. At the next cace atatioas (8tation 7-201, about 35 feet from 8tation 7-200), the record was a deflale rype 1 wave form with the characteristic double peak.

5.5 MEASUREMENTS ON BEAM DEVICE

The beam devices, descritbed to 8ection 2.5 .2 were used for anotber project on Upshot - Koothole and were locluded as part of the lastrurneatation of Teapot 8bot 12 as a coareulence in connection with Project 1.10. They wero dealpeed to yield proliminary toformuston on the behavior of atructural beame when subjected to the cirblast losdas. The two beame were placed at nombal ground range of 2,000 and 2,500 foet on the desert line. so an to be to the regton of noncleagical bleat waves. In the followis sec-

Figure 6.46 A-scalod tume of airival veraue alant rango. Teapot 8hot 12.

Hons, atter a discussion of the bacikground pertinent to these data. the beam resulta wlll be analyzed.
5.5.1 Background and Definitions. Fundamentally, so long as Dow remains nonrotatloas, an incompressible fuld moving past a submerged body will impart no motion (i.e. , force) to the body, for the resultant of the pressure distribution over the surface of any body in potential dow can never have a component in the direction of Dow. Since the equatlons describing such motion involve only those forces caused by Quid pressure, the moilon actually encountered in the case of immersed bodies is evideatly due elther directly or Indirectly to the influence of Quid viscosity.

For flow velocitles signincantly less than sonic. the actual force imposed upon an immersed body will depend only upon the Reynolds number characterizing the flow and upon the geometrical 'orm and ozientation of the body. Dimensional analysls of the several variables favolved will lead to the following expresaion for the resultant force:

$$
\begin{equation*}
F=\left(\frac{u L}{7} \cdot \operatorname{rorm}\right) L^{2} \rho u^{2} \tag{528}
\end{equation*}
$$

Where: $u=$ velocity
$L=$ length
$\eta=$ kinematlc viscosily
$\rho=$ denalty

The basic dras relationship is generally written in the more convenient form:

$$
\begin{equation*}
F=\oplus\left(R \ldots(\operatorname{corm}) A \frac{\rho u^{2}}{2} \quad C_{d} \frac{A \rho u^{2}}{2}\right. \tag{15271}
\end{equation*}
$$

Where: A = the projected area of the body on a plane normal to the direction of motlon

The term C_{d} le a variable coefficlent of dras:

$$
\begin{equation*}
C_{.} \cdot\left(H_{.} \text {(orm) } \frac{2 t}{A, u^{2}}\right. \tag{15301}
\end{equation*}
$$

Where $\frac{\rho u^{2}}{2}=$ the expresalon deflalug dyanmlc pressure.
The viacous action of Dnw may produce three essendally different types of drap. force. At very low Reynolds numbers. Inertal effecte are secondary to those of viscous atreas, the latier then extending a great diatince lolo the aurrounding Dow; the is tonown as deformation dras. At much higber Reynolde numbers the region in which apprectable deformation occurs is limited to a thln Quld layer aurrounding the body, the resultiog sbear then producing what is called aurface dras. Finally. If the iorm of the body is such that separation occurs, the low latenalty of presaure to the wake leads to a force on the immersed body, stace ine mangitude of this force varies with the siope of the body, it ls customarly termed form drag. Under higber-velocity Dow coodilions

Ficure 5.47 A-mcaled time of arrivel versue slant range. Teapot 8 bot 6.
(1.0. . Dow velocities approaching the velocity of pound in the medium), the incompressible Dow approximations and use of Reynolds number Sur establishing dynamic similarity are no longer valld. The two signifleant dimensionless parameters for compressible Qow are the ratlo of specifle heats and the Mach number M. At high velocitles, the drag is primarlly a function of Mach number, so that Equation 5.30 would read:

$$
C_{d} \psi(M \times 10 \mathrm{rm}) \frac{2 t}{t_{L u^{2}}} \quad 1 ; 311
$$

Only in the most elemeatary cases of deformation drag has it been possible to determine C_{d} analytically for certala basic body forms. Cases of motion Invalving separatici have been attacked from various standpoints. but without much succiss. Quartitative study of drag has, therefore, remalned largely experlmental. The magnitude of the force on a given body form is usually determined experimentally as a function of Reynolds or Mach number, elther in the wind tunnel or the towing tank.

As far as the Project 1.10 beam device fleld experiment is caricerned, there is practically no known previous experimental evidence with which to compare the data. The only wind-tunne! work done on H -beams has been in connection with bridge-design studies. For these purposes, the measurements of drag force are confned to maximum wind pressure of about 5^{n} psi and peak wind velocities of 100 miles per hour. For comparison, the Project 1.10 beam at 2.50 C -foot ground range (9 ri3) experienced a maximum pressure of about 1.500 psi (10 psi) and peak wiad velocilles probably in excess of 500 milles per bour. In addition. It is undoubtedly true that an unknown portion of the pressure on the beam was dur primarlly to the presence of partlculate matter (e.g. . water vapor, dust. etc.) suspended in the alr stream. These considerations, therefore, lead to the rather convincing fact that the wind tunnel work on H-beame is not pertinent to the problem at hand.

Purthermore, In an analytical sease. the possible presence of parilculate matter In the alr stream introduces a fundamental anomaly, the signiflance of which tas as yet not been adequately explatned. That is. the reliabllity of Equations 5.30 and 5.31 may be questloned. because it is likely that the determingtion of drag coefficient as a funcllon c! Reyoolds and/or Macb number is no longer valld when particulate matier is preseat. It is probable that it would be necessary to introduce new variables to account for particle size, particle density, and the aerodynamic properties of the suspended particles. Such an effort. although pertiaent to all the drag measurements of Teapot. is beyoad the scope of this report.
5.5.2 Beam-Dence Reuule. The strala-gage recorde oblained from the two-beam devices are shown In Figure 5.52 .

Due to the method of Ileld calibration of these dencea. the coordinates nipearing on the figure require some explanation. The callbration of the beam was pe..."med in the fleld as follows. Firat. the straln gage was mounted on the beam midway between the ead supports. Thea. using a calibrated hydraulic jack. known loads were applied near the center of the beam spas. Whille tbese loads were being applied. the straln gage responae was noted and the callbration of the beam-gage aystem completed.

However. It is at once appareat that the method of load application for calibration does not correspoad to the loading expected from alrblast. For the latter case, the load would necessarlly be distributed mcre or less unfformly over the entire beam learth. simple analysis reveale the relatlon:

Figure 5.48 A -scaled ($\mathrm{V}_{\mathrm{x}} \mathrm{tG} / \mathrm{R}^{2}$) versus slant range, Teapot Shot 12.

Figure 6.49 A-scaled $\left(V_{X} t G / R^{2}\right)$ versus slant range, UpshotKnothole Shots 1 and 10 compared with Teapot Sbot 12.

Figure 5.50 A-scaled ($V_{x} t\left(1 / R^{2}\right.$) veraue alant rango, Teapo: 8bot 6 compared with Teapot 8bot 12.

$$
=\frac{\partial r}{L}
$$

Where $w=$ distributed load per init length
$\mathbf{P}=$ the calibrating load (applied near center of span)
$\mathrm{L}=$ the length of the beam span.
Applylag the above relation to the results of Fipure 5.51 , it is possible to compute the drag force per unlt area; the right hand coordinate shown in the figure presents this drag force callbration for the two-beam devices used. The nect ssity for presentation of two 7 F 3 records is caused by some confusion duc to a base-line shift for this record. The two records represent the extremes of placement of the base lline. Data reduction was terminated when the difference in reduced force excecded $2: 1$.

TABLE S WATER INE COMPITED TEMPERATLRES TIA SHOT 12

Grond Rese	Arrivel TIme	Helam	Computation Methodia						Brot Value
			$\begin{gathered} \text { Eq } \\ 34 \\ \text { SR1 } \\ \text { IMLI } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Eq. } \\ & \text { Sil } \\ & \text { NolL } \\ & \text { DaL } \end{aligned}$	512 3KI Data	$\begin{aligned} & \text { Pan } \\ & \text { SA } \\ & \text { SRI } \\ & \text { lnata } \end{aligned}$	Eign 3 . SRI Inata	Typr ul usve	
Hoen	oer	lopt	- C	${ }^{\circ} \mathrm{C}$	${ }^{-} \mathrm{C}$	${ }^{-} \mathrm{C}$	${ }^{\circ} \mathrm{C}$		
150	-118	-				0.000		8toct	
1.000	-170	-				3.850		Shoch	
1.850		3				1.800		Trens	. 1.200
1.800	0199	-	250		*-870\%	350	- 2170	Tram	250-550
		8	. 154				50	8hock	
		10	- 78				330	8tock	
1.850		-				1.050		aboct	
1.000	0 M	0	- ${ }^{\circ}$		- -	700	$\underline{-}$	shock	
		3	35				000	shoct	35
		10	33				100	Broch	35
2.250		10				250		8toct	
2.509	- 014	\bullet	- 10		i 8	250	150	shoed	18
		1	20				240	shoch	20
		10	25				850	stroct	23
		25	10				850	Shuch	10
		40	38				250	sbect	33
1.130		-				250		Shoct	
2.000	184	0	-18		20	204	110	shock	20
		3	- 28				110	Brect	

- Indeter minant compusatiun - do wangle lerser
than 90 meer ground eurface
- The \quad aceective metive tempereture do to anale
ot eurfece teine emaller than aborestround eeve from
acte. 1-5 50°
1 Ku cera avellable

Since the drag force per unlt area (lersus tlme) is known and measurements near the beame of $q(p l t o t)$ dynamic pressure (versus time) are avallable, applicatlon of Equation 5.30 leade to determination of a drag coefficient C_{d} ae a function of time. These results are preseated In Figure 5.52; it should be emphasized that smoothed q° (piot) records were u sed for the drag-coefilcient calculatlons. Referring to the figure. several general characterlatice aro suldent:

Figure 5.51 Records of force veraus time from H-beam devices, Sbot 12.

Figure 5.52 Computed drag coofflent veraus ume for H -beam devices, 8hot 12.

1. The computed drag coefficient for a single beam may vary markedly with time (see 7F3/7Q3 trace, Figure 5.22).
2. The results at 2,000 -toot ground range show a rather sharp inltalal rise of drag coeffictent, as opposed to the long, slow increase assoclated with the 2,500 -foot measurement.
3. Although it is not possible to compare the computed coefflelents at the two stations, at comoarable times the average (over the first 100 msec) drag coefficient appears to be significantly langer for the beam at 2,500 feet.
4. The very sudden increase in coefflulent near 1.1 second on the 9F3/9Q3 record, Figure 5.52, is the result of a sharp decrease in the q^{*} (pitot) pressure at this time; the strain-gage record (Figure 5.51) indicates no correspondin- d'ecrease in drag force near 1.1 second.

Since the drag cotficients referred to above have been determined from combining two separate measurements (1.e., drag force and \mathbf{q}^{*} (pltot) pressure and since no information is avallable concerning the effects of paruculate matter upon each measurement, it is not possible to explain or evaluate the observations included in Figures 5.51 and 5.52. At present, these data represent an intital attempt to determine experimentally the drag force on an H-beam subjected to nonclassical alrblast pressure loading. It is probable that when the effects of disturbed blast waves and particulate matter upon drag force and $q($ pitot) measurements become better known, the Project 1.10 beam data will be of more-significant value.

Chapter 6 CONCLUSIONS and RECOMMENDATIONS

6.1 CONCLUSIONS

6.1.1 Instrumentation Performance. Fcr Teapot Project 1.10, full length records were obtained on 96 percent of the gage shannels (this was not true of previous shots when measuremeuts were made in the precursor region). This excelleat performance was largely the result of well-designed instrument towers and mounts. The towers were entirely undamaged on both Shots 6 and 12, and damage to the mounts was limited to the tearing oif of the gage baines on three gages. Such fallures as occurred (4 percent) were caused by electrical rather than mechanical damage.

The interpretation of the pitot-tube overpressure and dy namic pressure measuremen:s ls hampered by lack of calibratiou data under shock-wave now conditions and also by inadequate knowledge of effect of particulate matter upon the measurement. Corrections for pitch, yaw, and Mach number should be avallable for tranaonic and supersonic flows.

From the available data obtained from the aboveground baflle-mounted overpressure gages and nearby pitot-tube static pressure gages. It is apparent that the two gage configurations are not equivalent in regions of high pressure and/or disturbed blaat waves. in regions of supersonlc low, the above ground baffe-mounted gages are probably not desirable.
6.1.2 Wave-Form Classification. With a few exceptions (Hz ., the water line) it is possible to group the Project 1.10 pressure-time results into two sets of wave-form clasaincation: one syatem for overpressure (Types 0 through 8) and another for $q^{* \prime}$ (pitot) dynamic pressure measurements (Types B through H). As expected, wave-form behavior as a function of ground range is senaltive to the characteristics of the tlast-line surface.

For shot 12, the overpressure wave forms over the waier line at least partially traverse two wave-form cycles, whlle the wave forms over the aphalt surface do not attain classical form (Type 8) even at the last gage statlon (3,000 feet) on the blast line. However, on the desert line the classical form is observed at 4,500 feet. Although the non-clasalcal behavior persists to longer ranges over the asphalt, the precursor as a distinctly separate wave (Type 1) is observed at longer ranges over the desert. The same general remarks bold for the dynamic-pressure q(pitot) wavo-form classifcations.

When the wave-form classification is incorporated into the presentation of peak-pressure-versus-ground range, it becomes evident that it is possible for an ideal peak preteire measurement to be identified with a disturbed (non-ideal) wave form. Consequently, introducing both variables (wave form and peak pressure) into the analyais helps to reduce the amblgulties associated with comparing results from different nuclear tests.
6.1.3 Shock Velocity and Computed Preshock Temperature. Conuldering the horlizontal-trace velocity of the shock front as determined from gage-arrinal times over
the various surfaces instrumented on Shots 6 and 12, the velocities over the asphalt and desert surfaces are well above ideal, particularly at rlose-in (less than 1.500 feet) ground ranges. Even over the water surface, shock velocities determined near 1.000foot ground range are well above ideal values.

From a comprebensive review of the various methods of computing preshock temperature using shock parameters. It is evident that this computation is definitive only when sufficient wave-front orientation and pressure-time data are avcilable. In any case, carefu! analysis is necessary in the calculation and naturally, the computed temperature yields only some average value at the time of shock arrival. This is a poor substitute for the more desirable direct-temperature-versus-time (i.e., from detonation time) measurement.
6.1.4 Surface Effects. The limited wave-front orientation data which could be derived from the shot 12 resuits indicate that deviations of alrblast phenomena from ideal over the asphalt surface persisted to greater ground range when compared with results over the desert and water suriaces. In general, the wave-front orientations determined from arrival-time data agree very well with the NOL shock photography data.

To summarize, the peak overpressures measured on Shots 6 and 12 were depressed most aeverely over the asphalt surface and least over the water; in addition, aboveground mardmum pressures were generally higher than those measured at ground surface, a result also observed on Shot 10 of Upshot-Knothole.

The Project 1.10 dynamic-pressure $q(p i t o t)$ results Indicate a severe attenuation of peak pressure with distance for all surfaces. Also, the infuence of surface characterdatics appears least pronounced at the closeat gage station (750 feet) on Shot 12.

From the Shot 12 results obtained on the BRL guge arc (2.500 feet), abrupt localized changes in the characteristics of a surface over which a disturbed blast wave is travelins may have stgalflcani effects upon peak pressure and/or wavo form in the near vicinIty of the surface discontinulty. Data from the offaet gages on the water line reveal that precursor characteriatics observed on the close-in watcr-llne gage records are not due to cross-feed of energy from the desert surface.
6.1.5 Precursor Phenomena. When compared with the results from previous pre-cursor-forming nuclear shots, Shots 6 and 12 display simllar behavior: nunclassic wave forme. depressed peak overpressure above 7-8 psl, and close-in dynamic q(pitot) peak pressures which ere several times ideal.

Consideration of the Sbot 12 water-llne wave-form development, sbock veloctites, moasured pressure-time data, and offsot-gage data shows that a precursor formed over the water ovidently abortly before the pressure wave reached the firat gage (750 feet) and contlaued to evolve normally out to about 1.50 n vot ground range. Gage recorda at subsequent ground ranges indlcate what appears to be a complex cumpetition betwecn normal precursor behavior on the one hand and energy feed-in from the adjacent desert areas on the other.

Baacally, the precursor wave over the asphalt line was not much different from that over the desert - the ouly distinction belag that the disturbance appeared more extended over the asphalt.

Analysis of the results of Shots 6 and 12, coupled with the related theoretical approach by Chu, has cressed renowid Interest in the concept of a shock wave produced by high-flux thermal laput. Some conflence in the concept is generated by the surcess of a semi-empirical analysis of data obialned from precursor-forming nuclear explosions.

Ualag the Project 1.10 deta and some curve-atting procedures, it is possible to
compute the surface constants which apply to the desert and asphalt surfaces. The 8bot 6 (T-7 area, Yucca Flat) and Shot 12 (Frenchman Flat) desert-surface constants deviate by oaly 3 percent, and the asphalt-surface conatanis diffr, at moat, by 12 perceas from that of the desert.
6.1.6 Correlation with Damage. Analysis of the forces acting on the two H-beam devices instrumented on Shot 12 yields only very tentative conclusions. Although it was possible, using the $q^{*}(p i t o t)$-time results, to determine the computad drag coefficient versus-time for the two beams, there is no pertinent theoretical or experimental date for such devices with which to compare the field reeults. Also, it is belleved that the presence of particulate matter in the blast wave has a profound (but unknown) effect upon the drag (and drag coefficient) of such structurid elements.

6.2 RECOMMENDATIONS

There appears to be a need for a change in the procedure used for meaninting dyanmic pressure, partlcularly in stream Dows exceeding Mach 1.0. Impact pressure (total head) should be measured using a carefully designed supersonic tube, whoreas the corresponding overpressure measurement should be obta' id from a separate ground-level gage. In fact, there is need for a comprebensive investigation of instrumentation to determine what is most useful for measuring alrblast parameters in regions of high pressure and high Iow velocitles. Also, future instrument deaign must consider effects of suapended particulate matter upon thr, measurement.

The acheme of wave-form clasciflcation and the idea of including considerations of wave-form information in the analysis of peak pressures abould be retalned and extended to other blast parameters. It is believed that more usetul and underatandable presentathons would result from this method of analyale.

To conflim the concluaion about the lafluence of localizod surface discontinuities upon blast parameters (Section 6.1.4), future nuclear teste should include careful and detalled measurements over areas which include such surface discontinultes.

8ince there is some evidence that 8hot 12 was not tastrumented clasely enough to ground zero to delect precursor formation, it would de wise in future teate to obtaln at least time-of-arriyal measurements at cioser atations.

On future tests, in addition to the conventional pressure-ume moasurements come close-in measurementa abould be made which are apecifically designed to detect and deItneate the thermal abock wavo, if it exdata.

It is evident that more work, both in theory and laboratory testing, is noedod in the field of airblast drag forces on atructural elements before avallable (or future) Leld resulte can be made underatandable.

REFERENCES

1. Porzel and Reines; "Helght of Burat for Atomic Bombs"; LA-743R, Eeries B, Auruat S, 1949; Los Alamos Scloutiflc Laboratory, Los Alamos, New Mexico; Circulation limited; Socret Restricted Dein.
2. Gilbert, H. K., and Wilson, R. Q.: "Final Report, Operation Buster": WT-412, July 1962: Armed Forces Epecial Weapons Project; Secret Reatricted Data.
3. Ealmon, V.: "Air Pressure versus Time"; Project 12 , Operation Tumbler, WT-612, Fobruary 1932; Stanford Research Institute, Monlo Park, Callforala. Secret Rosirictod Deta.
4. Swift, L. M., asd 8achs. D. C.; "Ar Pressure versus Time": Project 1.1 b . Operation Upehot-Knothole. WT-711: 8tanford Research Institute, Menlo Park, Califoraia; 8eoret Reatricted Deta.
B. Shreve, J. D. Jr.; "Alr 8bock Pressure versus Time for a Tuwer Shot"; Project 1.2c-1, Operation Upahot-Knothole. WT-712; Sandia Corporation, Alouquerque, New Maxico: Booret Rostricted Data.
5. Broyles, Carter D.; "Dyramic Pressure versus Time and Supporting Air Blast Manurements": Project 1.1d, Operation Upshot-Knothole, WT-714; Sandia Corporation, Albuquarque. Now Mexico; Secret Reatricted Data.
6. Morris, W. E. , ot al: "Alr Biast Measurements"; Project 1.1a-1.2, Operation Upshot-Knothole, WT-710; Naval Ordnance Laboratory, Silver Epring, Maryland; 8eoret Restricted Data.
7. Cook T. B.Jr., and Kammermeyer, K.; "Sandia Laboratory Bhock-Gage Evaluatton Tests": Tumbler-8asper Report WT-605, October 1952; Confidential.
8. "Summery Report of the Technlcal Director"; Operation Upshoi-Knothole. WT-782: Armed Forces Epecial Weapone Project; Secret Restricted Data.
9. Poarson, A. O., and Brown, H. A.: "Calibration of a Combinod Pltot-Siatuc Tube and Vane-Type Flow Ansularity Indicator at Transonic Epeode and at Large Angles of Attack or Yaw"; NACA RM L52F24, Septomber 1952; Langley Aoronautical Laboratory; Unolacalfled.
10. Kolso, J., and Hesco; "Mach Bhock Formation From a Nuclear Detonation"; AFSWP-610, March 10, 1956; 8ecrot Reatricted Data.
11. "Summary Report of the Technlcal Director"; Operation Teapot, WT-1153; Armed Forces Epecial Wespons Project; Socret Reatricted Data.
12. Kaufiman, W. F., and Ehlabrot, M.; "A Mothod for Differentiation of Experimontal Data": J. Aero. 80t. 20, 428-430, June 1953; Unclasaffied.
13. Wang, Chl-Toh, and De8anto, D. F.; "Differentiation of Experimental Data by Moane of Blater Order Flalte-Dlference Formulea"; J. Aero. Bei. 20, 792-793, 8ept. 1983; Unclaselfod.
14. Moulton, J. F.: "Shock Photography Measurementa": Project 1.2, Operation Toapot, WT-1102; Naval Ordance Laboratory, 8ilver Spring, Maryland: 8ocret Rostricted Data.
15. "Effects of Atomic Weapons": Revised, September 1950; Los Alamos 8cientlic Laboratory, Los Namon, New Mexico; Unclassified.
16. Brode, H. L. : "Numerical Bolutionr of Spherical Blagî Waves"; J. App. Phya. 28, 788, June 1955; Unclacaifled.
17. Bryent, E.J.: "Response of Drag Type Equipment Targets in the Precursor Zone": Operation Teapot, WT-1123; Eecret Reatricted Data.
18. "Handbook of Chemiatry and Physics": Chemical Rubber Publiahing Compasy, 38th Edition, 1954: Unclaasified.
19. 8aver, F. M.: "The Preahock 8ound Velocity Field Over Loorganic and Orgalc Surfacea": USDA, AF8WP-420, December 1954; 8ecret.
20. Sauer, F. M. : "Correctlve Heating of Alr Above an Inorgnic Eurfince Heated by Radiation from a Nuclear Weapon": USDA, AF8WP-862. November 1955; Confldential.
21. "Capabilities of Atomic Weapons"; Department of the Army Manual IM 23-200. July 1955, Revised Edition; Sacret Reatrictod Data.
22. Porzel, F.; Armour Research Foundation, private commuication.
23. Chu, Boa-Teh; "Preasure Wavea Generated by Addition of Hoat in a Caceous Modium": Johns Hopldn Univeraity, NACA IN 3411, June 1956; Uaclasalfled.
24. Aroncon, C.J., of al; ${ }^{\omega}$ Eroo-Air and Cround Lovel Preasure Mearuremeats"; Project 1.3 eind 1.5, Operation Tumbler, WT-514; Naral Ordnance Laboratory, 84lver Spriag, Maryland; Secret Rostricted Data.

Appendix A ACCELERATION RESPCNSE OF WIANCKO PRESSURE GAGES

It thes been reoerally esaumed that the Wiancko belanced-reluctance preqaure gage has a negitgible reaposee to acceleration forces because of the two-coll. rocking - armatui a desiga. Figure A. 1 shows that acceleratica forces toad to more the armature almilarly with respect to both coils, whereas pressure applied to the aeasing element moves it in opposite direction from each onll. Thus. scceleratlon forces tend to malntaln the balanced coaditloas, procheling do electrical output. Messurementa of than acceleratlon reapoase show maximum respoases of the order of 0.0005 pal/g for a 30 -pal gage $\mathbf{0 . 0 0 1 6}$ percent FS/ G): \&andia Corporation teats ahow similar resulta (Reference 8).

The above measuremeate do not aeresarily tadicate the true performance. A change in the geometry of the tranaducer may produce no unbalasce while the gage is balanced. but may sericusly affect its reapoase. to this case, to pressure. A force which moves the armature away from the colls. for Inalance. may drantically affect its senallivity. Thus. If tranalent accelerallons are applied whilo a ateady pressure is stmultaceovaly applied, a probounced accele ration may reault.

Teate were made on a amall aurcbor of Wiancko preasure gages to determiae their accelerallon senaluvity under load. Esch sare was provided with a cbeck vilve at its Inlet. so that pressure could be applied and malntalned atter removil of the bose connection. The gages were mounted on a Scbievtiz apta table in sereral orlentations. wib alip-ring connections 2 a a armal demodulation circuit. The iffect of aplatable apeed (radtal acceleratloa) up to 90 g wis then observed. Figure A. 2 shows the resulte on a typlcal 30-pal gres.

In this tgure. the percentage error (ithe reading, not of full scale) caused by varlous values of acceleration when the gage is deflected th one-third, iwo-thirda, and full range is ahown for various orientatlose of the acceleration force. These resulte are typtcal of all gage ranges, but there is a conalderable variatlon between gages. Hisber-range gaget (100 and 300 pai) ahow much amaller errors (25 to 30 perceat as great), and 10 -pal gages abow alightly larger errora.

Note that transverse acceloration in the tangential direction teade to cause comparable errors to accoleration th the opening-closifiz drection - a eomewhat unexpected recult. It will be observed that proportioal error is gederally greater whea the presaure is leas than full acale. but is by no means conatant to terms of full-scals reading. At sero pressure, Do messurable de dection was observed up to 90 g except tor loogitudtal ecceleration, where 90 e produced a dedection equiraleat to about 0.04 pat.

The rosulce of these lesto tatimate that some of the habh observed in presaure-time measurements after shock wave arrival may be cauced by acceleratloo of the mounts.

In geseral, there is so way to cback thle poselblitity, but ose approsch appears protiable. In the pliwttube sage. iwo Whancko preseure transducers are mounted a fow loctes apart. These gages are mounted atmallarly with regard to tranaverse accelerations. Anv reapoase to trameverse or vertical acceleration of the zoons stould be to the anme direction on the two gages. A cbeck of the recorde may then ghow relaUroby hesh-frequeacy diaturbeaces which if due to acceleratuoo abould be to phase on the two recorde. No such rosulte bavo been obeerved (000 section 2.5.5). Which todicales that the high-frequeacy hagh ie probabi; sot det to the accolerastion of the gage mounte.

Trum A. 2 Effecte of accelernation: Whancto engo.

Appendix 8

GAGE RECORDS

Reductions of tracinga of the significant portion of all uasble gage recorde compriae this Appendix. Features such as lengths of posilive phase and aecondary shock do not appear in thise reductions. These aspects of the pressure-time functions. where pertinent. are documented in the tables.

The recorde are arranged firat by abot (Shot 12 precedea Shot 6). then by blast Ilne (water. desert. asphalt), then by ground range for each verticai level (surface level frat). Auxiliary recorda (offact gages. etc.) are introduced into the main sequence following the primary gage record

Each record ia provided with atilable the and presaure coordinates. The Ime indicated refers to zero time of the shot. The dotted curves document the manner in which the recorda were amoothed tefure correctlons for plich and, or Mach number were applted.

Figure B. 2 Original recorde, 8hot 12, water llne, 1,500 feet $\mathbf{- 2 , 0 0 0}$ feet.

Figure B. 3 Continued.

$$
\text { :: :.. } \cdot \cdot: \quad \text { • .. •.. : :.. : :.. :.• }
$$

CONFIDENTIAL

品

Figure B. 7 Continued.

CONFIDENTIAL

Figure B. 11 Original records, 8hot 12, asphalt line, 2,500 feet $\mathbf{3 , 0 0 0}$ feet.

..

Appendix C
 GAGE CALIBRATION DATA

TABLE C. 1 8BOT 6 PRESSURE OAOES

TASLE C. 2 ghot 12 PREBURE OAGES

TABLE C 2 CONTNUED

TABLE C. 3 B8OT 12 STRAN CAOES (B-BEAM)

Oround Range	ango Number	Calloration	
		A	B
8		$\mathrm{lb}-$ force $/ \mathrm{ln}^{2} / \mathrm{lb}$	1 lb -force/ $/ \mathrm{ma}^{2} / \mathrm{lo}$
2.000	753	38.40	-1.66
2,000	7F3A	17.08	-0.98
2,800	973	20.69	-2.28
8.800	9734	19.69	-1.80

[^0]: - Aeal-eave gmantry coused
 i A mortd torm of ivpe I

[^1]: ${ }^{1}$ Operation Tumbler data yield $\alpha / \sqrt{\text { KSC }} \leq 33$ ．Eatimated vilues are $\propto=0.7$ ， $c=0.500$ thas e $\sqrt{m_{\mathrm{m}}} / \sqrt{K S C} \leq 10$ ．

